1,814 research outputs found

    Support of dS/CFT correspondence from perturbations of three dimensional spacetime

    Get PDF
    We discuss the relation between bulk de Sitter three-dimensional spacetime and the corresponding conformal field theory at the boundary, in the framework of the exact quasinormal mode spectrum. We show that the quasinormal mode spectrum corresponds exactly to the spectrum of thermal excitations of Conformal Field Theory at the past boundary I^-, together with the spectrum of the Conformal Field Theory at the future boundary I^+.Comment: minor changes, new version accepted for publication in PL

    Challenges for Optimization of Reverse Shoulder Arthroplasty Part I: External Rotation, Extension and Internal Rotation.

    Get PDF
    A detailed overview of the basic science and clinical literature reporting on the challenges for the optimization of reverse shoulder arthroplasty (RSA) is presented in two review articles. Part I looks at (I) external rotation and extension, (II) internal rotation and the analysis and discussion of the interplay of different factors influencing these challenges. In part II, we focus on (III) the conservation of sufficient subacromial and coracohumeral space, (IV) scapular posture and (V) moment arms and muscle tensioning. There is a need to define the criteria and algorithms for planning and execution of optimized, balanced RSA to improve the range of motion, function and longevity whilst minimizing complications. For an optimized RSA with the highest function, it is important not to overlook any of these challenges. This summary may be used as an aide memoire for RSA planning

    Cold-sintered temperature stable Na0.5Bi0.5MoO4–Li2MoO4 microwave composite ceramics

    Get PDF
    © 2017 American Chemical Society. A cold sintering process (150 °C, 30 min and 200 MPa) was employed to fabricate Na 0.5 Bi 0.5 MoO 4 -Li 2 MoO 4 (NBMO-LMO) composites with up to 96.4% relative density. X-ray diffraction traces, backscattered electron images and Raman spectra indicated the coexistence of NBMO and LMO phases in all composites with no detectable secondary phases. The pemittivity (ϵ r ) and temperature coefficient of resonant frequency (TCF) decreased, whereas microwave quality factor (Q × f) increased, with increasing weight % LMO. Near-zero TCF was obtained for NBMO-20 wt %LMO with ϵ r ∼ 17.4 and Q × f ∼ 7470 GHz. Functionally graded ceramics were also fabricated with 5 ≤ ϵ r ≤ 24. To illustrate the potential of these cold sintered composites to create new substrates and device architecture, a dielectric graded radial index lens was designed and simulated based on the range of ϵ r facilitated by the NBMO-LMO system, which suggested a 78% aperture efficiency at 34 GHz

    Stability of Quantum Motion: Beyond Fermi-golden-rule and Lyapunov decay

    Full text link
    We study, analytically and numerically, the stability of quantum motion for a classically chaotic system. We show the existence of different regimes of fidelity decay which deviate from Fermi Golden rule and Lyapunov decay.Comment: 5 pages, 5 figure

    Divalent cation-dependent formation of electrostatic PIP2 clusters in lipid monolayers

    Get PDF
    Polyphosphoinositides are among the most highly charged molecules in the cell membrane, and the most common polyphosphoinositide, phosphatidylinositol-4,5-bisphosphate (PIP2), is involved in many mechanical and biochemical processes in the cell membrane. Divalent cations such as calcium can cause clustering of the polyanionic PIP2, but the origin and strength of the effective attractions leading to clustering has been unclear. In addition, the question of whether the ion-mediated attractions could be strong enough to alter the mechanical properties of the membrane, to our knowledge, has not been addressed. We study phase separation in mixed monolayers of neutral and highly negatively charged lipids, induced by the addition of divalent positively charged counterions, both experimentally and numerically. We find good agreement between experiments on mixtures of PIP2 and 1-stearoyl-2-oleoyl phosphatidylcholine and simulations of a simplified model in which only the essential electrostatic interactions are retained. In addition, we find numerically that under certain conditions the effective attractions can rigidify the resulting clusters. Our results support an interpretation of PIP2 clustering as governed primarily by electrostatic interactions. At physiological pH, the simulations suggest that the effective attractions are strong enough to give nearly pure clusters of PIP2 even at small overall concentrations of PIP2

    In situ monitoring of GaSb, GaInAsSb, and AlGaAsSb

    Get PDF
    Suitability of silicon photodiode detector arrays for monitoring the spectral reflectance during epitaxial growths of GaSb, AlGaAsSb, and GaInAsSb, which have cutoff wavelengths of 1.7, 1.2, and 2.3 {micro}m, respectively, is demonstrated. These alloys were grown lattice matched to GaSb in a vertical rotating-disk reactor, which was modified to accommodate near normal reflectance without affecting epilayer uniformity. By using a virtual interface model, the growth rate and complex refractive index at the growth temperature are extracted for these alloys over the 600 to 950 nm spectral range. Excellent agreement is obtained between the extracted growth rate and that determined by ex-situ measurement. Optical constants are compared to theoretical predictions based on an existing dielectric function model for these materials. Furthermore, quantitative analysis of the entire reflectance spectrum yields valuable information on the approximate thickness of overlayers on the pregrowth substrate

    Targeting lentiviral vectors to antigen-specific immunoglobulins

    Get PDF
    Gene transfer into B cells by lentivectors can provide an alternative approach to managing B lymphocyte malignancies and autoreactive B cell-mediated autoimmune diseases. These pathogenic B cell Populations can be distinguished by their surface expression of monospecific immunoglobulin. Development of a novel vector system to deliver genes to these specific B cells could improve the safety and efficacy of gene therapy. We have developed an efficient rnethod to target lentivectors to monospecific immunoglobulin-expressing cells in vitro and hi vivo. We were able to incorporate a model antigen CD20 and a fusogenic protein derived from the Sindbis virus as two distinct molecules into the lentiviral Surface. This engineered vector could specifically bind to cells expressing Surface immunoglobulin recognizing CD20 (αCD20), resulting in efficient transduction of target cells in a cognate antigen-dependent manner in vitro, and in vivo in a xenografted tumor model. Tumor suppression was observed in vivo, using the engineered lentivector to deliver a suicide gene to a xenografted tumor expressing αCD20. These results show the feasibility of engineering lentivectors to target immunoglobulin-specific cells to deliver a therapeutic effect. Such targeting lentivectors also Could potentially be used to genetically mark antigen-specific B cells in vivo to study their B cell biology

    Scalar wave propagation in topological black hole backgrounds

    Get PDF
    We consider the evolution of a scalar field coupled to curvature in topological black hole spacetimes. We solve numerically the scalar wave equation with different curvature-coupling constant ξ\xi and show that a rich spectrum of wave propagation is revealed when ξ\xi is introduced. Relations between quasinormal modes and the size of different topological black holes have also been investigated.Comment: 26 pages, 18 figure

    High quality factor cold sintered Li2MoO4BaFe12O19 composites for microwave applications

    Get PDF
    Ceramics-ceramic composites in series (1-x)Li2MoO4-xBaFe12O19 (LMO-BF12, 0.00 ≤ x ≤ 0.15) have been cold sintered at 120 °C and their structure and properties characterized. X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed that compositions were dual phase and had a dense microstructure. Composites in the xBF12-(1-x)LMO (0.0 ≤ x ≤ 0.15) series resonated at MW frequencies (∼6 GHz) with 5.6≤εr ≤ 5.8 and Qf = 16,000–22,000 GHz, despite the black colour of compositions with x > 0. The permeability of the composites was measured in the X band (∼8 GHz) and showed an increase from 0.94 (x = 0.05) to 1.02 (x = 0.15). Finite element modelling revealed that the volume fraction of BF12 dictates the conductivity of the material, with a percolation threshold at 10 vol% BF12 but changes in εr as a function of x were readily explained using a series mixing model. In summary, these composites are considered suitable for the fabrication of dual mode or enhanced bandwidth microstrip patch antennas

    High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

    Get PDF
    Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall glycans immobilized on nitrocellulose was assessed. Hierarchical clustering of microarray binding profiles from newly produced mAbs, together with the profiles for mAbs with previously defined specificities allowed the rapid assignments of mAb binding to antigen classes. mAb specificities were further investigated using subsequent immunochemical and biochemical analyses and two novel mAbs are described in detail. mAb LM13 binds to an arabinanase-sensitive pectic epitope and mAb LM14, binds to an epitope occurring on arabinogalactan-proteins. Both mAbs display novel patterns of recognition of cell walls in plant materials
    corecore