42 research outputs found

    Satisfaction with care quality and anxiety among family members during nursing home visiting restrictions: The chain mediating effect of emotional regulation and perceived stress

    Get PDF
    IntroductionThis study aimed to investigate the psychological well-being (perceived stress and anxiety) of Chinese family members during nursing home visiting restrictions and to elucidate the relationships among satisfaction with care quality, emotion regulation, perceived stress, and anxiety.MethodsAn online survey was conducted with a cross-sectional study design. From 18 to 29 January 2022, a total of 571 family members of nursing home residents completed online questionnaires comprising socio-demographic characteristics, satisfaction with care quality, emotion regulation, perceived stress, and anxiety. Mediation analyses were performed to estimate the direct and indirect effects of satisfaction with care quality on anxiety using the PROCESS macro for SPSS.ResultsThe results showed that approximately one-quarter of Chinese family members had anxiety symptoms during nursing home visiting restrictions. Satisfaction with care quality affected anxiety via three mediating paths: (a) through cognitive reappraisal (effect = 0.028); (b) through cognitive reappraisal and perceived stress sequentially (effect = −0.057); and (c) through perceived stress (effect = −0.212). The chain mediating effect (path b) accounted for 23.7% of the total effect.ConclusionsThese findings corroborated our hypothesis that cognitive reappraisal (a kind of emotion regulation strategy) and perceived stress mediated the relationship between satisfaction with care quality and anxiety during nursing home visiting restrictions. Efforts to address family members’ psychological well-being by focusing on cognitive reappraisal should be considered

    Individual-based morphological brain network organization and its association with autistic symptoms in young children with autism spectrum disorder

    Get PDF
    Individual-based morphological brain networks built from T1-weighted magnetic resonance imaging (MRI) reflect synchronous maturation intensities between anatomical regions at the individual level. Autism spectrum disorder (ASD) is a socio-cognitive and neurodevelopmental disorder with high neuroanatomical heterogeneity, but the specific patterns of morphological networks in ASD remain largely unexplored at the individual level. In this study, individual-based morphological networks were constructed by using high-resolution structural MRI data from 40 young children with ASD (age range: 2-8 years) and 38 age-, gender-, and handedness-matched typically developing children (TDC). Measurements were recorded as threefold. Results showed that compared with TDC, young children with ASD exhibited lower values of small-worldness (i.e., sigma) of individual-level morphological brain networks, increased morphological connectivity in cortico-striatum-thalamic-cortical (CSTC) circuitry, and decreased morphological connectivity in the cortico-cortical network. In addition, morphological connectivity abnormalities can predict the severity of social communication deficits in young children with ASD, thus confirming an associational impact at the behavioral level. These findings suggest that the morphological brain network in the autistic developmental brain is inefficient in segregating and distributing information. The results also highlight the crucial role of abnormal morphological connectivity patterns in the socio-cognitive deficits of ASD and support the possible use of the aberrant developmental patterns of morphological brain networks in revealing new clinically-relevant biomarkers for ASD.China Postdoctoral Science Foundation, Grant/Award Number: 2019M660236; National Natural Science Foundation of China, Grant/Award Numbers: 61901129, 62036003, 81871432, U1808204; The Basque Foundation for Science and from Ministerio de Economia, Industria y Competitividad (Spain) and FEDER, Grant/Award Number: DPI2016-79874-R; the Fundamental Research Funds for the Central Universities, Grant/Award Numbers: 2672018ZYGX2018J079, ZYGX2019Z017; the Sichuan Science and Technology Program, Grant/Award Number: 2019YJ018

    Thermodynamic behavior of correlated electron-hole fluids in van der Waals heterostructures

    Full text link
    Coupled two-dimensional electron-hole bilayers provide a unique platform to study strongly correlated Bose-Fermi mixtures in condensed matter. Electrons and holes in spatially separated layers can bind to form interlayer excitons, composite Bosons expected to support high-temperature exciton superfluids. The interlayer excitons can also interact strongly with excess charge carriers when electron and hole densities are unequal. Here, we use optical spectroscopy to quantitatively probe the local thermodynamic properties of strongly correlated electron-hole fluids in MoSe2/hBN/WSe2 heterostructures. We observe a discontinuity in the electron and hole chemical potentials at matched electron and hole densities, a definitive signature of an excitonic insulator ground state. The excitonic insulator is stable up to a Mott density of ~0.8×1012cm−20.8\times {10}^{12} \mathrm{cm}^{-2} and has a thermal ionization temperature of ~70 K. The density dependence of the electron, hole, and exciton chemical potentials reveals strong correlation effects across the phase diagram. Compared with a non-interacting uniform charge distribution, the correlation effects lead to significant attractive exciton-exciton and exciton-charge interactions in the electron-hole fluid. Our work highlights the unique quantum behavior that can emerge in strongly correlated electron-hole systems

    Femtosecond Laser-Induced Phase Transformation on Single-Crystal 6H-SiC

    No full text
    Silicon carbide (SiC) is widely used in many research fields because of its excellent properties. The femtosecond laser has been proven to be an effective method for achieving high-quality and high-efficiency SiC micromachining. In this article, the ablation mechanism irradiated on different surfaces of 6H-SiC by a single pulse under different energies was investigated. The changes in material elements and the geometric spatial distribution of the ablation pit were analyzed using micro-Raman spectroscopy, Energy Dispersive Spectrum (EDS), and an optical microscope, respectively. Moreover, the thresholds for structural transformation and modification zones of 6H-SiC on different surfaces were calculated based on the diameter of the ablation pits created by a femtosecond laser at different single-pulse energies. Experimental results show that the transformation thresholds of the Si surface and the C surface are 5.60 J/cm2 and 6.40 J/cm2, corresponding to the modification thresholds of 2.26 J/cm2 and 2.42 J/cm2, respectively. The Raman and EDS results reveal that there are no phase transformations or material changes on different surfaces of 6H-SiC at low energy, however, decomposition and oxidation occur and then accumulate into dense new phase material under high-energy laser irradiation. We found that the distribution of structural phase transformation is uneven from the center of the spot to the edge. The content of this research reveals the internal evolution mechanism of high-quality laser processing of hard material 6H-SiC. We expect that this research will contribute to the further development of SiC-based MEMS devices

    BEAM-PHASE MEASUREMENT SYSTEM FOR HIRFL

    No full text
    The beam phase measurement system in HIRFL is<br />introduced. The system had been improved using RFsignal<br />mixing and filtering techniques and noise<br />cancellation method. Therefore, the influence of strongly<br />RF disturbing was eliminated and the signal to noise rate<br />was increased, and a stable and sensitive phase<br />measurement system was developed. The phase history of<br />the ion beam was detected by using 15 sets of capacitive<br />pick-up probes installed in the SSC cyclotron. The beam<br />phase information was necessary for tuning purposes to<br />obtain an optimized isochronous magnetic field, where<br />the beam intensity was increased and the beam quality<br />was optimized. The measurement results before and after<br />optimized isochronous magnetic field for 40Ar15+ ion and<br />12C6+ ion in SSC were given. The phase measurement<br />system was reliable by optimizing isochronous magnetic<br />field test, and the precision reached &plusmn;0.5o, the sensitivity<br />of beam signal measurement was about 10nA as well

    A 3D rGO-supported NiFe2O4 heterostructure from sacrificial polymer-assisted exfoliation of NiFe-LDH for efficient oxygen evolution reaction

    No full text
    NiFe2O4 takes an attractive potential candidate for oxygen evolution reaction (OER) catalysts, however, its usual preparation based on high-temperature calcination limits exposure of catalytically active sites. Herein, we report a new and efficient strategy for preparing NiFe2O4 supported by three-dimensional graphene network (NFO/3DGN) electrocatalysts. Specifically, NiFe layered double hydroxide (NiFe LDH) was exfoliated to single layer by polylactic acid (PLA), single layer NiFe LDH was released when PLA was hydrolyzed, and PLA hydrolysate etched single layer NiFe LDH to NiFe2O4; Meanwhile, the lamellar graphene oxide was reduced to 3DGN, so that NiFe2O4 was loaded on 3DGN, which means the agglomeration of NiFe2O4 could be prevented and efficient electron transmission channels for NiFe2O4 could be provided due to 3DGN. The as-prepared NFO/3DGN-10 exhibited an excellent electrocatalytic activity and stability for OER in an alkaline solution (with a low overpotential of 272 ± 25 mV at 10 mA cm−2 with a Tafel slope of 64 mV dec−1). Based on theoretical calculations, the reaction energy barrier of NiFe2O4 on the speed determination step reduced significantly owing to 3DGN. These results indicate that this facile fabrication method is a promising route for developing high-performance catalysts based on mixed metal spinel oxides supported by 3DGN
    corecore