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Abstract

Individual-based morphological brain networks built from T1-weighted magnetic res-

onance imaging (MRI) reflect synchronous maturation intensities between anatomical

regions at the individual level. Autism spectrum disorder (ASD) is a socio-cognitive

and neurodevelopmental disorder with high neuroanatomical heterogeneity, but the

specific patterns of morphological networks in ASD remain largely unexplored at the

individual level. In this study, individual-based morphological networks were con-

structed by using high-resolution structural MRI data from 40 young children with

ASD (age range: 2–8 years) and 38 age-, gender-, and handedness-matched typically

developing children (TDC). Measurements were recorded as threefold. Results

showed that compared with TDC, young children with ASD exhibited lower values of

small-worldness (i.e., σ) of individual-level morphological brain networks, increased

morphological connectivity in cortico-striatum-thalamic-cortical (CSTC) circuitry, and

decreased morphological connectivity in the cortico-cortical network. In addition,

morphological connectivity abnormalities can predict the severity of social
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communication deficits in young children with ASD, thus confirming an associational

impact at the behavioral level. These findings suggest that the morphological brain

network in the autistic developmental brain is inefficient in segregating and distribut-

ing information. The results also highlight the crucial role of abnormal morphological

connectivity patterns in the socio-cognitive deficits of ASD and support the possible

use of the aberrant developmental patterns of morphological brain networks in

revealing new clinically-relevant biomarkers for ASD.
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1 | INTRODUCTION

Morphological brain networks (MBNs) characterize interregional simi-

larities in several morphological aspects of gray matter and have

recently attracted attention in the investigation of brain abnormalities

in neurological diseases (Bassett et al., 2008; He, Chen, &

Evans, 2007). Although brain networks can be constructed using other

neuroimaging techniques, including functional magnetic resonance

imaging (fMRI) and diffusion tensor imaging (DTI) (Alonso Montes

et al., 2015; Diez et al., 2015), MBNs have many distinct advantages

from being constructed using T1-weighted images, an imaging modal-

ity that is routinely acquired in clinical settings and has a high signal-

to-noise ratio, the preprocessing pipeline is much simpler and does

not require the removal of physiological noise; furthermore, move-

ment artifacts are small (H. Wang, Jin, Zhang, & Wang, 2016; Wang,

Jiao, & Li, 2020). Given that morphological measures, especially gray

matter volume, have specific neurological and genetic bases, MBNs

reflect the level of synchronous maturation between anatomical

regions during brain development (Alexander-Bloch, Giedd, &

Bullmore, 2013). Converging evidence suggests that group-level

MBNs using structural covariance exhibit specific network patterns

(Duan et al., 2020; Lim, Jung, & Aizenstein, 2013; Yun et al., 2020;

Zou, She, Zhan, Gao, & Chen, 2018). Duan et al. (2020) reported a

decrease in long-range structural covariance and an increase in struc-

tural covariance in subcortical structures in ASD, suggesting the cru-

cial role of aberrant synchronized maturation between subcortical

regions in social cognition and behavior in ASD. Nevertheless, only

one MBN was created for a specific group of participants, thereby

ignoring interindividual differences (Saggar et al., 2015). Several tech-

niques have been developed to directly extract structural information

from T1-weighted images and construct individual-based MBNs that

can reflect developmental coordination among anatomical regions at

the individual level (Kong et al., 2015; Raj, Mueller, Young, Laxer, &

Weiner, 2010; Tijms, Seriès, Willshaw, & Lawrie, 2012; Zhou

et al., 2011). Kong and colleagues presented a method to estimate

interregional morphological connectivity by using the Kullback–Leibler

(KL) divergence without ignoring remarkable inter-subject variability

in the geometry (e.g., shape and size) among different brain regions

(Kong et al., 2014; Kullback & Leibler, 1951). Exploring such

individual-based MBN organization may allow for the sensitive detec-

tion of subtle brain maldevelopment under pathological conditions.

Autism spectrum disorder (ASD) is a childhood-onset atypical

neurodevelopmental condition causing deficits in social communica-

tion, social reciprocity, and restricted and repetitive behaviors (RRBs)

(Association American Psychiatric, 2013). Accumulating evidence sug-

gests that ASD is accompanied by atypical structural brain connectiv-

ity within the neural systems related to social deficits (Billeci,

Calderoni, Tosetti, Catani, & Muratori, 2012; Im et al., 2018; Noriuchi

et al., 2010) that is majorly referred to connectivity based on DTI

(Chung, Adluru, Dalton, Alexander, & Davidson, 2010; Chung, Adluru,

Dalton, Alexander, & Davidson, 2011; Dennis et al., 2011; He

et al., 2020). One study found that the decreased fractional anisotropy

(FA), a metric of white matter integrity, of the inferior longitudinal fas-

ciculus is negatively correlated with social interaction in ASD

(Im et al., 2018). Another report showed a negative association with

social impairment of FA in the left dorsolateral prefrontal cortex,

implying that abnormalities in fiber tract integrity are associated with

social deficits in ASD (Noriuchi et al., 2010). However, genetic and

molecular studies revealed that abnormal neural connectivity in indi-

viduals with ASD may not be necessarily constrained only by white-

matter connectivity but also by direct synaptic connections within

gray matter (Abell et al., 1999; McAlonan et al., 2005). Some abnor-

malities in the gray matter of young children with autism were discov-

ered to be the underlying developmental mechanisms of brain and

behavior (Gori et al., 2015; J. Liu et al., 2017; Sparks et al., 2002). A

recently developed group-wise anatomical covariance network of

brain gray matter in young children with autism revealed that abnor-

mally topological properties favor local rather than global network

interactions (Bethlehem, Romero-Garcia, Mak, Bullmore, & Baron-

Cohen, 2017), thus enabling its prediction for social communication

deficits (Duan et al., 2020). Although morphological gray matter net-

works provide valuable information regarding synchronized gray mat-

ter maturation during brain development (Alexander-Bloch

et al., 2013; Evans, 2013), the construction of these networks in an

individual level remains largely unexplored. Hence, this work con-

structed individual-based gray matter networks to explore specific
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morphological network patterns related to social deficits in young

children with ASD. In particular, individual ROI-wise MBNs were

assessed based on gray matter volume from anatomical MRI to iden-

tify specific network patterns. Predictive models were also established

to unveil the association between network patterns and social impair-

ment severity. This study provides answers to the following two ques-

tions: (a) whether young children with ASD exhibit more serious

abnormal topological properties in MBNs compared with TDC; and

(b) whether the discovered abnormal morphological connectivity pat-

terns constitute a potential neuromarker for estimating social deficits.

2 | MATERIALS AND METHODS

2.1 | Participants

This study included 40 young children with ASD recruited from Sichuan

Provincial Rehabilitation Hospital (Chengdu, China) and 38 age-,

gender-, and handedness-matched typically developing children (TDC)

recruited from the local kindergartens through advertisements. Patients

were excluded if at least one of the following conditions occurred:

(a) have a genetic etiology of ASD (e.g., fragile X syndrome and 15q syn-

drome); (b) have history of seizure disorders and/or attention deficit

hyperactivity disorder; (c) have history of loss of consciousness for

>5 min and/or current medication with psychoactive drugs, and

(d) have history of brain injury or other psychiatric neurological disor-

ders. All TDC did not have any neurological disorders as assessed by

the Structured Clinical Interview for Diagnostic and Statistical Manual

of Mental Disorders (DSM-V) Axis j Disorders-non-patient version nor a

family history of psychiatric illness in any first-degree relative. Detailed

clinical and demographic data are shown in Table 1.

After the full explanation on the purpose of this study, written

informed consents were acquired from all participants' parents or legal

representants. This work was approved by the research ethical com-

mittee of University of Electronic Science and Technology of China

and Sichuan Provincial Rehabilitation Hospital and has been registered

at https://clinicaltrials.gov/ (Identifier: NCT02807766).

2.2 | Diagnosis and clinical assessment

Patients with ASD were diagnosed by experienced psychiatrists using

the fifth edition of the DSM checklist with a series of clinical assess-

ments focusing on detailed developmental history, clinical observa-

tion, and cognitive condition (Association American Psychiatric, 2013).

Among them, 23 were evaluated by the Autism Diagnostic Observa-

tion Schedule (ADOS) (Lord et al., 2000), and 17 could not be evalu-

ated due to the unwillingness of parents or representants or the lack

of children's cooperation. ADOS provides a semi-structured, interac-

tive autism diagnostic observation to assess autistic symptoms. Each

ADOS subdomain is scored on a four-point scale, and high scores indi-

cated high symptomatic severity.

The TDC were assessed for verbal IQ, performance IQ, and

full-scale IQ by using the Wechsler Intelligence Scale for Children

TABLE 1 Participant demographics

ASD (n = 40) TDC (n = 38)

t/x2 p-value Effect sizeMean ± SD Mean ± SD

Age (years) 5.25 ± 1.10 5.64 ± 0.85 t(76) = 1.72 p = .09a 0.39

Age range (years) 3.6–7.6 2.7–6.8 – –

Sex (male/female) 32/8 28/10 χ2 = 0.44 p = .51b 0.14

Handedness (right/left/mixed/N/A) 30/3/3/4 35/1/2/0 χ2 = 1.53 p = .46b 0.28

Image quality scores (3/4/5) 7/20/13 9/12/17 χ2 = 2.73 p = .25b 0.38

ADOS

Communication 6.17 ± 1.90 – – –

Social interaction 10.13 ± 3.35 – – –

Communication + social interaction 16.30 ± 4.86 – – –

Stereotyped behaviors and restricted interests 1.70 ± 1.58 – – –

IQ

Full scale IQ – 111.25 ± 10.05 – –

Performance IQ – 105.07 ± 15.34 – –

Verbal IQ – 108.82 ± 12.39 – –

Note: Effect size, a statistical metric that measures the strength of the relationship between two variables on a numeric scale. ADOS was unavailable for 17

children with ASD. t(df ), Between-group t statistic and degrees of freedom.

Abbreviations: ADOS, autism diagnostic observation schedule; ASD, autism spectrum disorder; IQ, intelligence quotient; SD, standard deviation; TDC,

typically developing children.
ap-value obtained by two-sample t test.
bp-value obtained by the Kruskal–Wallis test.
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(WISC-IV) to further exclude children with mental retardation (Olivier,

Mahone, & Jacobson, 2018; Wechsler, 1949). Assessing the IQ of

young children with ASD using WISC-IV is difficult due to their sub-

stantial language impairments. Thus, the subjects with ASD did not

undergo an IQ assessment.

2.3 | Data acquisition

MRI data were acquired in all participants using a 3 Tesla GE DISCOV-

ERY MR750 scanner (General Electric, Fairfield Connecticut) with a

high-speed gradient and an eight-channel prototype quadrature bird-

cage head coil at University of Electronic Science and Technology of

China. Foam padding was utilized to reduce head motion for all partici-

pants. During scanning, the TDC group was instructed to keep still and

watch cartoons, and the ASD group was sedated using 50 mg/kg chloral

hydrate (CH) under a strict clinical protocol established by the Radiology

Sedation Committee of the hospital. CH was frequently used as a seda-

tive and hypnotic pharmaceutical drug, has a long history of safety and

availability in infants, and is used commonly for pediatric electroenceph-

alography sedation (Jan & Aquino, 2001; Rumm, Takao, Fox, &

Atkinson, 1990). Mild to moderated doses of CH do not affect neural

responses, and 80 mg/kg CH is set as the maximum dose to ensure the

relatively low risk of unwanted side effects (Avlonitou et al., 2011;

Sisson & Siegel, 1989). Therefore, CH may not disturb these findings in

this study. Finally, each kid's guardian was present during scanning.

High-resolution MR images were obtained using a 3D T1 sequence

with the following acquisition parameters: repetition time/echo time

(TR/TE) = 6.02/1.96 ms, 156 slices, 256 × 256 matrix, 7� flip angle, field

of view = 256 mm × 256 mm, and voxel size = 1 mm × 1 mm × 1 mm.

Each T1 image was manually inspected for motion artifacts by three

experienced personnel. Image quality was estimated using five scores

ranging from 1 (indicating poor quality) to 5 (good quality). Images were

excluded only when the average score across evaluators was less than

or equal to two points. A second inspection was then performed based

on the homogeneity in voxel-based morphometry maps. After the nor-

malized segmented gray matter (GM) map was obtained for each sub-

ject (detailed description in the following MR image preprocessing

section), Pearson's correlation between normalized GMmaps was calcu-

lated, and a correlation matrix was then generated (N * N, N is total

number of subjects). The homogeneity of each subject was defined as

the average of each row of the correlation matrix. GM maps with low

homogeneity (less than mean-2*SD of the GM maps) were manually

checked again. The homogeneity of segmented GM maps between sub-

jects was calculated by using a Computational Anatomy Toolbox

(CAT12, http://www.neuro.uni-jena.de/cat/).

2.4 | Data analysis

2.4.1 | MRI preprocessing

T1-weighted images were preprocessed using the Computation

Anatomy Toolbox (CAT 12; Christian Gaser; Department of

Psychiatry, University of Jena) implemented in Statistical Paramet-

ric Mapping (SPM 12; Wellcome Department of Cognitive Neurol-

ogy, University of London, UK) for voxel-based morphometry

(VBM) analysis to obtain voxel-wise gray matter volumes for each

subject. All T1-weighted images from ASD and TDC groups were

first corrected for bias-field inhomogeneities and then segmented

into gray matter (GM), white matter (WM), and cerebrospinal fluid

(CSF) by using the customized pediatric tissue probability maps

generated with the Template-O-Matic 8 toolbox (TOM8, http://

dbm.neuro.uni-jena.de/wordpress/software/tom/). During segmen-

tation, a hidden Markov Random Field model was applied to

account for partial volume effects (Cuadra, Cammoun, Butz,

Cuisenaire, & Thiran, 2005; Tohka, Zijdenbos, & Evans, 2004). The

segmented images from ASD and TDC groups were spatially nor-

malized using the DARTEL algorithm (Ashburner, 2007) to create

the gray matter template for the cohort through iterative registra-

tion. Finally, the resulting scans were smoothened using a Gauss-

ian kernel of 8 mm full width at half maximum (FWHM). Total

intracranial volume (ICV), calculated as the sum of GM, WM, and

CSF volumes, was used as a covariate for further statistical

analyses.

2.4.2 | Construction of individual MBN

Large-scale MBNs for each participant were constructed based on

their GM volume images (Figure 1). Herein, network nodes represent

brain regions defined by the automated anatomical labeling (AAL)

atlas, which included 90 brain regions (Tzourio-Mazoyer et al., 2002),

and network edges were quantified by the symmetric KL divergence-

based similarity (KLS) (Kong et al., 2014; Kong et al., 2015; Wang

et al., 2016) and defined as:

KLS P,Qð Þ= e−Dkl P,Qð Þ, ð1Þ

a measure between 0 and 1, where 0 indicates the maximum separa-

bility between the gray matter P and Q density distributions, and 1 is

for two identical distributions. Equation (1) uses the KL distance,

that is,

DKL P,Qð Þ=
Xn
i=1

P ið Þlog P ið Þ
Q ið Þ +Q ið ÞlogQ ið Þ

P ið Þ
� �

, ð2Þ

where n is the total number of sample points (n = 27 was used in this

study, similar to the one in Wang et al., 2016). P and Q were esti-

mated for each node using a kernel density estimation (Botev,

Grotowski, & Kroese, 2010). One KLS-based MBN (i.e., 90 × 90 simi-

larity matrix) was generated for each participant, and the averaged

network across the participants was averaged. An average linkage

clustering method was applied to the elements in the averaged MBNs

to investigate whether such hierarchical organization is present in

MBNs across participants (Eisen, Spellman, Brown, & Botstein, 1998)

(Figure 2). The coefficient of variation map (CV, ratio of the SEM) was
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also calculated to show the consistency of the connections in the net-

work across participants (Kong et al., 2015) (Figures S1 and S2).

2.5 | Graph theory analysis

2.5.1 | Threshold selection

To validate the topological properties of the derived morphological

connectivity matrices, each matrix was thresholded into a set of

weighted networks, by using the desired sparsity for noisy element

exclusion. Nodes represented brain regions, and edges represented

undirected connections. Connectivity sparsity S (i.e., the ratio of the

existing edges to the maximum possible number of edges in the net-

work) was used as a threshold measurement to ensure the same num-

ber of nodes and edges in the resultant networks across participants

and complete the comparison of between-group differences in net-

work organization (Achard & Bullmore, 2007). Instead of selecting a

single threshold, a consecutive sparsity range of 0.05 < S < 0.4 (inter-

val = 0.02) was employed to each weighted matrix (Achard, Salvador,

Whitcher, Suckling, & Bullmore, 2006; He et al., 2007; Watts &

Strogatz, 1998). All the following network analyzes were performed

repeatedly using a different threshold value among all possible ones.

2.5.2 | Network metrics

MBNs at different sparsity threshold S were assessed by calcu-

lating global network metrics using the GRETNA toolbox, which

include small-world parameters (i.e., weighted clustering coeffi-

cient Cw, weighted characteristic path length Lw, normalized

weighted clustering coefficient γ, normalized weighted character-

istic shortest path length λ, and small-worldness σ) and network

efficiency (i.e., local efficiency Elocal and global efficiency Eglobal)

(Duan et al., 2014; Jinhui Wang et al., 2015). Detailed descrip-

tions of the above metrics are shown in Supplementary Informa-

tion. Area under the curve (AUC) was computed for each

network metric Y to provide a summarized scalar for the topo-

logical characterization of brain networks and was expressed as

follows:

YAUC =
Xn−1

k =1

Y Skð Þ+Y Sk +1ð Þ½ �ΔS=2: ð3Þ

Sparsity thresholds were varied from S1 = 0.05 to Sn = 0.4 with

step variations of ΔS = 0.02. The AUC metric has been applied in prior

studies and enables the sensitive detection of topological alterations

in some diseases (Zhang et al., 2011).

F IGURE 1 Overview of methodological sketch. (a) Estimation of gray matter volume using a standard VBM procedure. (b) Brain parcellation
with the AAL90 atlas and construction of individual morphological network using similarity (i.e., KLS) between PDFs from different brain regions.
c) Calculation of network metrics. (d) Exploration of abnormally morphological subnetworks using the NBS technique. (e) Construction of features
based on the average from connections in each subnetwork. (f) Estimation of symptomatic severity using SVR model built on LOOCV. Note that
the KLS matrix was generated from the brain network organization of one subject. VBM, voxel-based on morphometry; AAL, anatomical
automatic labeling atlas; ROI, region of interest; KLS, Kullback–Leibler divergence-based similarity; PDF, probability density function; NBS,
network-based statistic; SVR; Linear support vector regression; and LOOCV, leave-one-out cross validation
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2.6 | Statistical analysis

2.6.1 | Between-group differences

Nonparametric permutation tests were conducted on the network

metrics, that is, small-world and network efficiency, to determine the

differences in the network properties between ASD and TDC

(Bullmore et al., 1999). First, between-group differences in each net-

work metric in the specific threshold and its corresponding AUC

across the defined range of sparsity thresholds were calculated. All

the values were then randomly shuffled into two groups, and the

mean differences between the two randomized groups were rec-

alculated to reject the null hypothesis that the existing group differ-

ences could be caused by chance. This permutation procedure was

repeated 10,000 times, and the 95th percentile of each distribution

provided the significant values with a possibility of type I error of

0.05. False discovery rate (FDR) was applied to correct multiple com-

parisons (Benjamini & Hochberg, 1995). Multiple linear regression

analyses were performed before the permutation tests to eliminate

the confounding effects of ICV and gender for each network metric.

Moreover, network-based statistics (NBS) was employed to localize

regional brain networks indicating significant between-group differ-

ences in inter-regional morphological connectivity (Zalesky, Fornito, &

Bullmore, 2010). Two sample t test statistics was employed to weigh

for each edge, and those with t > 3.42 (corresponding to p < .001,

uncorrected) were systematically searched for connected edges with

the same effect. Interconnected networks, formally known as graph

components, were then determined. A family-wise error (FWE)

corrected p value was computed for the size of each resulting compo-

nent by using a nonparametric permutation approach (1,000 permuta-

tions). For each permutation, the group labels were randomly shuffled,

and the size of the largest interconnected network was determined to

yield an empirical estimate of the null distribution of maximal compo-

nent size. A FWE-corrected p value was evaluated for each inter-

connected network as the proportion of permutations yielding a

relatively large or equal-sized interconnected network. Before NBS,

multiple linear regression analyses were conducted to remove the

effects of nuisance variables (i.e., ICV and gender). Finally, the NBS

identifies the connected subnetwork(s) that differ the most between

groups. In addition, 4,005 morphological connections (4,005

[90 × (90–1)/2] referring to the total number of connections in MBN)

were compared between ASD and TDC, and these morphological con-

nections showing between-group differences were correlated with

age in the ASD group to further explore whether the atypically mor-

phological connectivity associated with brain development exhibits a

specific connectivity pattern. ICV and gender also served as nuisance

covariates.

2.6.2 | Prediction of autistic symptoms

A linear support vector regression (SVR) was applied to estimate each

patient's symptom severity scores based on the mean of the strength

of all edges in each connected subnetwork to further investigate

F IGURE 2 Averaged MBNs across participants in ASD (a) and TDC (b). Red and blue color represent high and low similarity values between
ROIs, respectively. Principal diagonal values (i.e., self-connection) were excluded from the following analyses and thus fixed to zero. The rows and
columns were reordered based on the labels obtained after hierarchical clustering, which allows visualizing together those ROIs with great
similarity between pairs. Clustering hierarchy was displayed on top of the matrices by using dendrograms. MBNs, morphological brain networks;
ASD, autism spectrum disorder; TDC, typically developing control. L, left; R, right
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whether the connected subnetwork(s) obtained from NBS can predict

the severity of ASD symptoms. Two classes of connected subnet-

works, namely, hyper-connected and hypo-connected networks were

used. Leave-one-out cross validation (LOOCV) approach, which is

known to avoid overfitting in the regression model, was adopted in

this work (Rosenberg et al., 2016; Shen et al., 2017). For LOOCV, the

estimated values from “left-out” subjects were obtained by extracting

the training data from all other subjects and repeating this procedure

until all subjects had an estimated value. The correlation between the

scores of estimated and observed symptoms were then calculated

while controlling for ICV and gender. Its statistical significance was

examined using permutation tests. In each permutation, the group

labels were reallocated, and the same regression procedure was

repeated to obtain a Rperm value based on each reallocated dataset.

This permutation procedure was repeated 10,000 times, and the final

p value was generated by the proportion of the number of times that

Rperm is larger or equal to the actual R-value in total permutation

times.

2.7 | Reproducibility analysis

The robustness of our findings was first validated using interval = 0.01

and 0.03 across the range of sparsity thresholds. Data were then

reanalyzed while controlling for nuisance variances of ICV, age, and

gender to examine the result robustness with regression of age (ROA).

Finally, the widely applied K-fold cross-validation strategy (i.e., K = 10)

was employed to further examine the reliable results by using differ-

ent cross-validation techniques (Aghdam, Sharifi, & Pedram, 2018;

Shen et al., 2017).

3 | RESULTS

3.1 | Attenuated small-worldness of MBNs in ASD

The averaged MBNs for ASD and TDC group are shown in Figure 2a,

b, respectively. Specific connectivity patterns for each group were

assessed by hierarchical clustering. Most connections with relatively

high similarity exhibited relatively low CV (Figures S1 and S2), and this

phenomenon occurred with a high consistency across subjects. Com-

pared with those in TDC, the MBNs in individuals with ASD exhibited

significantly lower σ and γ in each sparsity threshold and their

corresponding AUC (σ, p = .011, γ, p = .009, Figure 3a,b, FDR

corrected) across the defined range of sparsity thresholds. Although

the significant differences in σ and γ were observed between ASD

and TDC, the MBNs in young children with ASD did not exhibit small-

world topological organization because they did not satisfy the

F IGURE 3 Between-group differences in the global topological metrics of MBNs between ASD and TDC. (a) Group differences in σ for
different values of sparsity threshold. Gold and silver curves represent σ values in ASD and TDC, respectively. Inset maps show group differences
in AUC for σ across the different sparsity thresholds. Error bars indicate SEM. Similar to panel (a) but for (b) γ, (c) λ, (d) Eglob, and (e) Eloc. Asterisks
indicate significance level of p < .05 (FDR corrected). MBNs, morphological brain networks; σ, small-world topology; γ, normalized clustering
coefficient; λ, normalized characteristic shortest path length; Eglob, global efficiency; Eloc, local efficiency; AUC, area under the curve; FDR, false
discovery rate. ASD, autism spectrum disorder; TDC, typically developing control
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conditions (i.e., σ = γ=λ, γ> 1 and λ≈1) in Figure 3. Considering the sca-

lar quantitative measurement of σ (σ = γ=λ) and lack of significant differ-

ence in λ (p > .05, Figure 3c), we speculated that the decreased small-

worldness (σ) can be attributed to the decreased normalized clustering

coefficient (γ) in young children with ASD. In relation to network effi-

ciency metrics, no significant differences were found in global (Eglobal,

p > .05, Figure 3d) or local (Elocal, p > .05, Figure 3e) efficiency.

3.2 | Network-based statistics identified two
impaired morphological connectivity subnetworks

NBS identified two impaired morphological subnetworks, one charac-

terized by hyper-connectivity and the other one by hypo-connectivity

based on KLS. The hyper-connectivity network consisted of 35 con-

nections and affected subcortical structures such as thalamus, palli-

dum, and putamen, and cortical regions that together formed the

cortico-striatum-thalamic-cortical (CSTC) circuitry (Figure 4a). Mean-

while, the hypo-connectivity network comprised 60 connections that

majorly affect cortical regions, including short-distance connections

within the prefrontal cortex and long-distance connections linking dif-

ferent lobes, and referred here as cortico-cortical networks

(Figure 4b). Age-related atypical connectivity pattern, which is sensi-

tive to brain development, was also distinguished from the impaired

morphological subnetworks (Figure S3).

3.3 | Abnormal connectivity in MBNs predicts
symptom severity in ASD

With the use of a linear SVR approach, the abnormal hyper-

connectivity and hypo-connectivity networks obtained from NBS

were found to predict communication deficits (p = .035, permutation

test, Figure 5) but not abnormal social reciprocity (Figure S4) and RRB

(Figure S5) in young children with ASD.

3.4 | Reproducibility of findings

Consistent results were found with given interval = 0.01 (Figure S6)

and 0.03 (Figure S7) in the defined range of sparsity thresholds,

suggesting that these findings are independent of the parameter of

interval. Despite the missing few connections in connected subnet-

works and weak statistical significance of topological properties

F IGURE 4 Hyperconnectivity (a) and hypoconnectivity (b) networks identified by NBS. (a) Hyperconnectivity network consisted of
35 interconnected links represented by red lines in top wheel and bottom glass-brain. Different ROIs from the AAL90 anatomical atlas were
grouped in six different networks as shown in the wheels with brain plots and with a different color. (b) Hypoconnectivity network consisted of
60 interconnected links (i.e., blue lines). NBS, network-based statistic; AAL, anatomical automatic labeling atlas; ROI, region of interest; ASD,
autism spectrum disorder; TDC, typically developing control; L, left; R, right
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relative to our main results, consistent results were observed even

when ROA was applied (Figures S8, S9, and S10), suggesting the mini-

mal effect of ROA on our findings. In the 10-fold cross-validation analy-

sis, a marginal significant association was found between predicted and

observed ADOS communication score after the permutation test

(p = .06, 10,000 times, Figure S11). In summary, these analyses per-

formed well with different conditions, the findings are robust.

4 | DISCUSSION

Individual-based MBNs were built using structural MRI data to system-

atically identify altered morphological connectivities and their relation-

ship to social behavior in young children with ASD. The findings can be

summarized as follows: (a) young children with ASD exhibited signifi-

cantly decreased values of σ due to a decrease in the normalized clus-

tering coefficient; and (b) the discovered impaired morphological

connectivity patterns, namely, increased connectivity in the CSTC cir-

cuitry and decreased connectivity in the cortico-cortical network,

predicted the severity of social communication deficits in childhood

autistic brain. All these results suggest that the individual-based mor-

phometry approach provides a new window for interpretation of human

brain anatomical networks a.k.a., human connectome. Novel measure-

ments assessing morphological network patterns, which can underline

behavioral impairment in ASD, might also define a new class of putative

biomarkers that aid in the diagnosis of autistic symptoms.

4.1 | Delay to establish efficient MBN in the
infantile autistic brain

The human brain is a complex network where a multitude of short-

range and long-range connections coexist, and its efficiency in

segregating and distributing information is characterized by topology

properties (e.g., small-worldness) (Bassett & Bullmore, 2017; Power,

Fair, Schlaggar, & Petersen, 2010; Watts & Strogatz, 1998). The topol-

ogy properties of the brain network are age-dependent, and the brain

network reaches an adult-like topological organization via substantial

changes in brain connectivity and development of specific brain func-

tion (Cao et al., 2017; Gao et al., 2011). Although the topological con-

figuration of MBNs in young children with ASD and TDC did not

exhibit based on the definition of small-worldness, we speculate that

MBNs would shift from a random arrangement toward an ordered

configuration and be established into the high-efficient organization

for information processing during maturation. Moreover, brain matu-

ration results from a combination of pruning redundant connectivity

and strengthening synergistic connectivity to provide an efficient

whole-brain network organization, that is, assembling highly inter-

connected networks with low cost (E. Bullmore & Sporns, 2012; Sup-

ekar, Musen, & Menon, 2009). The cluster coefficient (i.e., γ) is an

indicator of local network interconnectedness, and the path length is

a measure of its overall connectedness; these two are the key compo-

nents of small-worldness (Watts & Strogatz, 1998). Here, the signifi-

cantly lower values of σ and γ in young children with ASD than in

TDC suggest the delay in establishing efficient brain morphological

organization in an autistic developing brain. A possible cause is the

impaired pruning in the local connections during development, but

this statement needs further investigation. Although the absence of

the small-worldness in MBNs is inconsistent with fMRI and DTI stud-

ies suggesting a continued development of the small-worldness in the

infantile brain (Fair et al., 2009; Power et al., 2010; Van Den Heuvel

et al., 2015), the present findings may provide complementary infor-

mation on topological configuration during the development of the

brain network by using T1 imaging data.

4.2 | Increased morphological connectivity in the
CSTC circuitry in ASD

The findings indicated an increased morphological connectivity in

CSTC circuitry, which involves the thalamus, striatum, pallidum, and

cerebral cortex (especially in temporal lobe) (Figure 4a) (Gunaydin &

Kreitzer, 2016; Maximo & Kana, 2019). CSTC plays a critical role in

auditory information processing related to social context, during

which the basal ganglia (mainly in striatum and pallidum) integrate

excitatory signals from the cortex to be sent back to other cortical

regions via thalamic projections (Fuccillo, 2016; Gunaydin &

Kreitzer, 2016; Hilton et al., 2010). Accumulating evidence suggests

that individuals with ASD show heightened auditory sensitivity and

atypical responses and filtering to complex auditory stimuli (Hilton

et al., 2010; Matsuzaki et al., 2012). Autistic brains were recently dis-

covered to exhibit increased auditory–thalamic connectivity in ASD

(Maximo & Kana, 2019) and auditory–basal ganglia connectivity,

majorly between superior temporal gyrus and putamen (Di Martino

et al., 2011). Gunaydin & Kreitzer, 2016) reported that the exiting

downstream projection patterns between basal ganglia and thalamus

F IGURE 5 Correlation between predicted and observed values in
the ADOS communication subscore in ASD. Solid and dashed lines
denote respectively the best-fitted line and 95% confidence interval
of the Pearson's correlation analysis. ADOS scores could not be
obtained for 17 ASD kids. ADOS, autism diagnostic observation
schedule; ASD, autism spectrum disorder
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are composed of GABAergic medium spiny neurons and suggested

that inhibitory mechanisms might mediate such control in human

behavior. In agreement with previous studies, the current findings

supported that the strengthened morphological integration in the

CSTC circuit may be associated with the altered ability of auditory

information processing in an autistic developing brain.

4.3 | Decreased cortico-cortical MBNs in
childhood autistic brain

Young children with ASD exhibited a decrease in cortico-cortical

MBNs, which involve prefrontal, frontal, parietal, and occipital lobes

(Figure 4b). A weak connectivity of cortical networks has been found

in ASD (Cherkassky, Kana, Keller, & Just, 2006; Just, Cherkassky, Kel-

ler, & Minshew, 2004; Murias, Webb, Greenson, & Dawson, 2007). A

positron emission tomography study also showed a weak association

between glucose metabolic levels in frontal and posterior brain

regions in individuals with ASD (Horwitz, Rumsey, Grady, &

Rapoport, 1988). Another single-photon emission computed tomogra-

phy research found that young children with ASD exhibit delay in the

maturation of frontal lobe circuitry compared with control participants

(Zilbovicius et al., 1995). A recent MRI research proposed the cortical

hypo-connectivity theory in ASD (Just et al., 2004; Just, Cherkassky,

Keller, Kana, & Minshew, 2007; Kana, Libero, & Moore, 2011). This

theory assumes an inefficient interregional brain connectivity across

the cerebral cortex that results in abnormal information integration at

psychological and neural levels in autistic brains and may also explain

diverse impairments in social symptoms (Just et al., 2004; Schipul, Kel-

ler, & Just, 2011). Other studies also revealed that the overall connec-

tivity class in ASD is highly heterogeneous, and a combination of

hyper- and hypo-connectivity seems to coexist across different sub-

types of ASD (Maximo & Kana, 2019; Rasero, Jimenez-Marin, Diez,

Hasan, & Cortes, 2020; Yerys et al., 2017) and trajectories of neural

development (C. He et al., 2020).

Social interactions largely rely on information integrative

processing, which requires a compromise of high-quality interaction

and efficiently recurrent cognitive processing during human interac-

tion. Given that understanding, another person's mind requires high-

level abstraction, the deficit in the theory of mind could be due to

abnormal integrative social and cognitive processing, thus extending

the theory of hypo-connectivity to all cognitive and social profiles in

autism (Baron-Cohen, Leslie, & Frith, 1985). Furthermore, a decrease

in synchronization among brain regions while performing a working

memory task was found in individuals with ASD (Koshino et al., 2005).

Other authors found that autistic participants showed lower func-

tional connectivity among the frontal, parietal, and occipital lobe com-

pared with healthy controls (Damarla et al., 2010). This finding

supported the hypo-connectivity theory in ASD to explain social and

cognitive impairments in this condition (Just et al., 2004; Schipul

et al., 2011). The present results also consistent with the hypo-

connectivity theory and suggest that the decreased cortico-cortical

morphological connectivity may be associated with the complex cog-

nitive and social functions in ASD. On the basis of similar functional

abnormalities in previous reports (Kana et al., 2011; Maximo &

Kana, 2019), the two paired MBNs in the current work in may facili-

tate the combination of morphological information (i.e., coordination

of gray matter structure) and functional interaction in the two subnet-

works in ASD. These findings help in understanding the physiological

meaning of MBNs via functional imaging evidence and further agree

that the brain structure provides support to its functional information

processing (Park & Friston, 2013).

4.4 | Association of the abnormalities in MBNs
with communication deficits in ASD

The observed abnormalities in morphological connectivity patterns

such as increased connectivity in CSTC and decreased connectivity in

the cortico-cortical network can be used to predict the severity of

communication deficits in childhood ASD. This finding may reflect

that the aberrant integration of information has a behavioral manifes-

tation in the social-communicative domain of young children with

ASD. This brain–behavior association also underscores the potential

importance of abnormally morphological connectivity in CSTC cir-

cuitry and across the cerebral cortex in ASD. These results are consis-

tent with prior studies supporting the potential relationships between

atypical social information processing and brain connectivity including

structural connectivity (Duan et al., 2020) and functional connectivity

(Gotts et al., 2012; Guo et al., 2020) in ASD.

4.5 | Limitations

Our findings should be considered in light of some limitations. First,

17 children with ASD were absent of assessment with ADOS, due to

the unwillingness of the guardians or uncooperation of children during

the evaluation. Future studies utilizing a large sample size with

completely clinical phenotype assessment are needed to generalize

the current results to a broad population with ASD. Second, young

children with ASD were sedated using CH to reduce motion artifacts

and ensure a complete MRI examination. Stringent quality control and

inclusion criteria (e.g., rating of imaging quality and homogeneity of

gray matter maps) were also used. Although CH has been used in

many studies of gray matter (Liu et al., 2019; Jia Wang et al., 2017),

evidence disproving the influence of CH on gray matter remains insuf-

ficient. Further works must explore the exact effect of CH on gray

matter. Third, the morphological connectivity in this study was built

from the probability distributions of morphological variables obtained

from structural neuroimaging. Such distributions require an accurate

evaluation. In this study, regions of interest have been defined from

the AAL atlas widely used for brain network constructions (Gong

et al., 2009; Zhang et al., 2011). This atlas exhibited sufficiently large

observations for each brain area (larger than 120) and ensured the

accurate evaluation of regional morphological distributions. However,

previous studies with either resting-state fMRI or diffusion MRI have

reported that measuring network properties (e.g., small-world proper-

ties) possibly rely on the choice of the brain template to some extent.
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A comparison of the present results with those obtained using differ-

ent templates is important to offer comprehensive insights into the

effect of different brain parcellation schemes on the topological orga-

nization of individual-level morphological brain networks. Fourth,

although a reliable ROI-wise morphological connectivity has been

achieved by the KLS technique (Kong et al., 2015; Wang et al., 2016;

Zhao et al., 2020), additional experiments are still required to identify

the extent of how morphological connectivity can reflect structural or

functional connectivity. Several similarity and dissimilarity metrics

(i.e., wavelet-based and correlative features) can be adopted to evalu-

ate morphological connectivity in future studies. Constructing individ-

ual morphological networks and investigating how they are affected

by other factors, such as cortical thickness, area and curvature, tissue

density, or cell type derived in the native space are of particular

importance.

5 | CONCLUSION

Young children with ASD exhibited poor efficiency of individual-level

morphological brain networks, and the abnormal morphological con-

nectivity patterns (i.e., increased connectivity in CSTC circuitry and

decreased connectivity in cortico-cortical network) are substantially

associated with social communication deficits. These results suggest

the critical contribution of aberrant morphological network patterns

to the neuropathology of ASD. A thorough description of the specific

morphological brain network is required for a sufficient understanding

of ASD pathogenesis and behavioral symptoms.
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