12,373 research outputs found

    The cross-correlation between galaxies of different luminosities and Colors

    Get PDF
    We study the cross-correlation between galaxies of different luminosities and colors, using a sample selected from the SDSS Dr 4. Galaxies are divided into 6 samples according to luminosity, and each of these samples is divided into red and blue subsamples. Projected auto-correlation and cross-correlation is estimated for these subsample. At projected separations r_p > 1\mpch, all correlation functions are roughly parallel, although the correlation amplitude depends systematically on luminosity and color. On r_p < 1\mpch, the auto- and cross-correlation functions of red galaxies are significantly enhanced relative to the corresponding power laws obtained on larger scales. Such enhancement is absent for blue galaxies and in the cross-correlation between red and blue galaxies. We esimate the relative bias factor on scales r > 1\mpch for each subsample using its auto-correlation function and cross-correlation functions. The relative bias factors obtained from different methods are similar. For blue galaxies the luminosity-dependence of the relative bias is strong over the luminosity range probed (-23.0<M_r < -18.0),but for red galaxies the dependence is weaker and becomes insignificant for luminosities below L^*. To examine whether a significant stochastic/nonlinear component exists in the bias relation, we study the ratio R_ij= W_{ii}W_{jj}/W_{ij}^2, where W_{ij} is the projected correlation between subsample i and j. We find that the values of R_ij are all consistent with 1 for all-all, red-red and blue-blue samples, however significantly larger than 1 for red-blue samples. For faint red - faint blue samples the values of R_{ij} are as high as ~ 2 on small scales r_p < 1 \mpch and decrease with increasing r_p.Comment: 25 pages, 18 figures, Accepted for publication in Ap

    The clustering of SDSS galaxy groups: mass and color dependence

    Full text link
    We use a sample of galaxy groups selected from the SDSS DR 4 with an adaptive halo-based group finder to probe how the clustering strength of groups depends on their masses and colors. In particular, we determine the relative biases of groups of different masses, as well as that of groups with the same mass but with different colors. In agreement with previous studies, we find that more massive groups are more strongly clustered, and the inferred mass dependence of the halo bias is in good agreement with predictions for the Λ\LambdaCDM cosmology. Regarding the color dependence, we find that groups with red centrals are more strongly clustered than groups of the same mass but with blue centrals. Similar results are obtained when the color of a group is defined to be the total color of its member galaxies. The color dependence is more prominent in less massive groups and becomes insignificant in groups with masses \gta 10^{14}\msunh. We construct a mock galaxy redshift survey constructed from the large Millenium simulation that is populated with galaxies according to the semi-analytical model of Croton et al. Applying our group finder to this mock survey, and analyzing the mock data in exactly the same way as the true data, we are able to accurately recover the intrinsic mass and color dependencies of the halo bias in the model. This suggests that our group finding algorithm and our method of assigning group masses do not induce spurious mass and/or color dependencies in the group-galaxy correlation function. The semi-analytical model reveals the same color dependence of the halo bias as we find in our group catalogue. In halos with M\sim 10^{12}\msunh, though, the strength of the color dependence is much stronger in the model than in the data.Comment: 16 pages, 14 figures, Accepted for publication in ApJ. In the new version, we add the bias of the shuffled galaxy sample. The errors are estimated according to the covariance matrix of the GGCCF, which is then diagonalize

    Bandwidth and Electron Correlation-Tuned Superconductivity in Rb0.8_{0.8}Fe2_{2}(Se1z_{1-z}Sz_z)2_2

    Full text link
    We present a systematic angle-resolved photoemission spectroscopy study of the substitution-dependence of the electronic structure of Rb0.8_{0.8}Fe2_{2}(Se1z_{1-z}Sz_z)2_2 (z = 0, 0.5, 1), where superconductivity is continuously suppressed into a metallic phase. Going from the non-superconducting Rb0.8_{0.8}Fe2_{2}(Se1z_{1-z}Sz_z)2_2 to superconducting Rb0.8_{0.8}Fe2_{2}Se2_2, we observe little change of the Fermi surface topology, but a reduction of the overall bandwidth by a factor of 2 as well as an increase of the orbital-dependent renormalization in the dxyd_{xy} orbital. Hence for these heavily electron-doped iron chalcogenides, we have identified electron correlation as explicitly manifested in the quasiparticle bandwidth to be the important tuning parameter for superconductivity, and that moderate correlation is essential to achieving high TCT_C

    Scalable Production of Ambient Stable Hybrid Bismuth-based Materials: AACVD of Phenethylammonium Bismuth Iodide Films

    Get PDF
    Large homogeneous and adherent coatings of phenethylammonium bismuth iodide were produced using the cost-effective and scalable aerosol-assisted chemical vapour deposition (AACVD) methodology. The film morphology was found to depend on the deposition conditions and substrates, resulting in different optical properties to those reported from their spin-coated counterparts. Optoelectronic characterization revealed band bending effects occurring between the hybrid material and semiconducting substrates (TiO2 and FTO) due to heterojunction formation, and the optical bandgap of the hybrid material was calculated from UV-visible and PL spectrometry to be 2.05 eV. Maximum values for hydrophobicity and crystallographic preferential orientation were observed for films deposited on FTO/glass substrates, closely followed by values from films deposited on TiO2/glass substrates

    Efficient T-CONT-agnostic Bandwidth and Wavelength Allocation for NG-PON2

    Get PDF
    Dynamic bandwidth and wavelength allocation are used to demonstrate high quality of service (QoS) in time wavelength-division multiplexed–passive optical networks (TWDM-PONs). Both bandwidth and wavelength assignment are performed on the basis of transmission containers (T-CONTs) and therefore by means of upstream service priority traffic flows. Our medium access control (MAC) protocol therefore ensures consistency in processing alike classes of service across all optical network units (ONUs) in agreement with their QoS figures. For evaluation of the MAC protocol performance, a simulator has been implemented in OPNET featuring a 40 km, 40 Gbps TWDM-PON with four stacked wavelengths at 10 Gbps each and 256 ONUs. Simulation results have confirmed the efficiency of allocating bandwidth to each wavelength and the significant increase of network traffic flow due to adaptive polling from 9.04 to 9.74 Gbps. The benefit of T-CONT-centric allocation has also been measured with respect to packet delay and queue occupancy, achieving low packet delay across all T-CONTs. Therefore, improved NG-PON2 performance and greater efficiency are obtained in this first demonstration of T-CONTs allocated to both wavelength and time.Peer reviewe

    Atomic structure of Ge quantum dots on the Si(001) surface

    Full text link
    In situ morphological investigation of the {105} faceted Ge islands on the Si(001) surface (hut clusters) have been carried out using an ultra high vacuum instrument integrating a high resolution scanning tunnelling microscope and a molecular beam epitaxy vessel. Both species of hut clusters--pyramids and wedges--were found to have the same structure of the {105} facets which was visualized. Structures of vertexes of the pyramidal clusters and ridges of the wedge-shaped clusters were revealed as well and found to be different. This allowed us to propose a crystallographic model of the {105} facets as well as models of the atomic structure of both species of the hut clusters. An inference is made that transitions between the cluster shapes are impossible.Comment: 6 pages, 6 figures. Accepted to JETP Letters (publication date 2010-03-25
    corecore