15 research outputs found

    Pan-Genome Analyses of the Genus <i>Cohnella</i> and Proposal of the Novel Species <i>Cohnella silvisoli</i> sp. nov., Isolated from Forest Soil

    No full text
    Two strains, designated NL03-T5T and NL03-T5-1, were isolated from a soil sample collected from the Nanling National Forests, Guangdong Province, PR China. The two strains were Gram-stain-positive, aerobic, rod-shaped and had lophotrichous flagellation. Strain NL03-T5T could secrete extracellular mucus whereas NL03-T5-1 could not. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the two strains belong to the genus Cohnella, were most closely related to Cohnella lupini LMG 27416T (95.9% and 96.1% similarities), and both showed 94.0% similarity with Cohnella arctica NRRL B-59459T, respectively. The two strains showed 99.8% 16S rRNA gene sequence similarity between them. The draft genome size of strain NL03-T5T was 7.44 Mbp with a DNA G+C content of 49.2 mol%. The average nucleotide identities (ANI) and the digital DNA–DNA hybridization (dDDH) values between NL03-T5T and NL03-T5-1 were 99.98% and 100%, indicating the two strains were of the same species. Additionally, the ANI and dDDH values between NL03-T5T and C. lupini LMG 27416T were 76.1% and 20.4%, respectively. The major cellular fatty acids of strain NL03-T5T included anteiso-C15:0 and iso-C16:0. The major polar lipids and predominant respiratory quinone were diphosphatidylglycerol (DPG) and menaquinone-7 (MK-7). Based on phylogenetic analysis, phenotypic and chemotaxonomic characterization, genomic DNA G+C content, and ANI and dDDH values, strains NL03-T5T and NL03-T5-1 represent novel species in the genus Cohnella, for which the name Cohnella silvisoli is proposed. The type strain is NL03-T5T (=GDMCC 1.2294T = JCM 34999T). Furthermore, comparative genomics revealed that the genus Cohnella had an open pan-genome. The pan-genome of 29 Cohnella strains contained 41,356 gene families, and the number of strain-specific genes ranged from 6 to 1649. The results may explain the good adaptability of the Cohnella strains to different habitats at the genetic level

    Beam control method for multi-array antennas based on improved genetic algorithm

    No full text
    In the rapid development of modern science and technology, the human communication system has developed to 5G, and antenna in the related equipment research and technology application has also shown a positive role. With the increasing demand for antennas and their application scope, people have put forward more requirements on the beam shape of antennas. Therefore, it is very important to control the beam of multi-array antenna based on improved genetic algorithms in the new era. Therefore, on the basis of understanding the genetic algorithm and its application content, this paper studies the future development of related technologies based on the design content and test results of the broadband low-side lobe and high-gain microstrip display antenna developed in the new era

    Quality of Life and Its Related Factors in Chinese Unemployed People: A Population-Based Cross-Sectional Study

    No full text
    With the global economic crisis and industrial restructuring, the unemployed are suffering from job loss-related stress and loss of income, which is believed to impair their mental and physical health, while coping and self-efficacy could combat the adverse effects of unemployment on health. Thus, this study aims to describe quality of life (QOL) among unemployed Chinese people and explore the associated factors. A cross-sectional study was conducted by convenience sampling, composed of 1825 unemployed people, from January 2011 to September 2011. Questionnaires pertaining to demographic characteristics, the 36-item Short-Form Health Survey (SF-36), the abbreviated version of the Cope Inventory (Brief COPE) and self-efficacy scales were used to collect information from unemployed people in the eastern, central, and western regions of China. Hierarchical multiple regression analysis was performed to explore the related factors of QOL. A structural equation model (SEM) was used to test the relations among coping, self-efficacy, and QOL. Mental QOL was significantly lower than physical QOL in Chinese unemployed people. Coping had significant effects on both physical component summary (PCS) and mental component summary (MCS), while self-efficacy played the mediating role in the association between Coping and QOL. Unemployed Chinese people’s mental QOL was disrupted more seriously than their physical QOL. An increase in coping could improve QOL by promoting better management of issues brought about by unemployment. In addition, self-efficacy has the ability to reduce the impact of unemployment on QOL, through the mediating path of coping on QOL. This study highlights the need of coping skills training and self-efficacy enhancement for better management of unemployment in order to improve QOL and well-being

    Composition of norfloxacin-resistant bacteria and isolation of norfloxacin-degrading bacteria in subtropical aquaculture ponds in China

    No full text
    To analyze the composition of norfloxacin-resistant bacteria and norfloxacin-degrading bacteria in pond water and sediment in subtropical China, the composition of antibiotic resistant bacteria in pond water and sediment enriched with norfloxacin-containing medium was analyzed by high-throughput sequencing. Sediment and water samples were collected from 3 fish ponds in subtropical China, and domesticated with norfloxacin, subsequently norfloxacin-resistant bacteria through high-throughput sequencing of 16S rDNA, and isolated norfloxacin--degrading bacteria. Our results showed that the pond sediment and water contain a variety of norfloxacin-resistant bacteria, mainly from Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Chloroflexi. Moreover, we isolated two norfloxacin-degrading bacteria (NorXu-2 and NorXu-3). The norfloxacin-degrading rate by NorXu-2 and NorXu-3 in the culture mediums with 200 μg/mL was the highest, which was up to 49.71% and 35.79%, respectively. When the norfloxacin concentration was 200 μg/mL, NorXu-2 and NorXu-3 had the best norfloxacin- -degrading effect at pH of 6, and the degradation rates were 53.64% and 45.54%, respectively. Moreover, NorXu-3 exhibited a good tolerance to high NaCl concentration. These results not only provided basic data for the follow-up study of the molecular mechanism of antimicrobial microbial degradation, but also provided potential norfloxacin degrading bacteria for norfloxacin removal and bioremediation in aquaculture environment

    Enhanced Antibiotic Tolerance of an In Vitro Multispecies Uropathogen Biofilm Model, Useful for Studies of Catheter-Associated Urinary Tract Infections

    No full text
    Catheter-associated urinary tract infections (CAUTI) are a common clinical concern as they can lead to severe, persistent infections or bacteremia in long-term catheterized patients. This type of CAUTI is difficult to eradicate, as they are caused by multispecies biofilms that may have reduced susceptibility to antibiotics. Many new strategies to tackle CAUTI have been proposed in the past decade, including antibiotic combination treatments, surface modification and probiotic usage. However, those strategies were mainly assessed on mono- or dual-species biofilms that hardly represent the long-term CAUTI cases where, normally, 2–4 or even more species can be involved. We developed a four-species in vitro biofilm model on catheters involving clinical strains of Escherichia coli, Pseudomonas aeruginosa, Klebsiella oxytoca and Proteus mirabilis isolated from indwelling catheters. Interspecies interactions and responses to antibiotics were quantitatively assessed. Collaborative as well as competitive interactions were found among members in our model biofilm and those interactions affected the individual species&amp;rsquo; abundances upon exposure to antibiotics as mono-, dual- or multispecies biofilms. Our study shows complex interactions between species during the assessment of CAUTI control strategies for biofilms and highlights the necessity of evaluating treatment and control regimes in a multispecies setting

    Iron oxide coated sand (IOS) : scale-up analysis and full-scale application for phosphorus removal from goat farm wastewater

    No full text
    Effective eutrophication control, especially for decentralized wastewater treatment, has received increasing attention in recent years. In view of this, iron oxide coated sand (IOS) granules, a recycled waste product from the drinking water industry, was investigated for phosphorus removal from goat farm wastewater, both at laboratory-scale and at full-scale. Brunauer-Emmett-Teller adsorption revealed a high specific surface area (249 m(2)/g) of the IOS. Fourier Transform Infrared Spectroscopy and X-ray Diffraction demonstrated that Fe(III) compounds are the main functional component and Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy showed that Fe and O elements covered more than 84% of the surface of the IOS. The IOS granules showed good phosphorus adsorption capacity over a wide pH range during laboratory-scale batch tests. More-over, the phosphorus adsorption was very fast and the residual phosphorus concentration dropped below 0.02 mg/L within an hour at a dosage of 20 g/L. After adsorption, the exhausted IOS could be regenerated by using 0.5 M KOH, and more than 80% adsorption capacity remained. Laboratory-scale column tests with real waste-water originating from a goat farm were run and Bed Depth Service Time and Bohart-Adams models were applied in view of scale-up. Based on this, a full-scale IOS based fixed bed reactor was designed, built and tested at a goat farm. A TP removal efficiency of 99% with a 0.87 m(3) IOS fixed bed reactor (fed at 2.2 m(3)/d) was obtained. The TP concentration in the effluent remained below 0.3 mg/L for nearly 400 days, achieving long term TP removal. This study demonstrates that IOS based treatment is an ecological and environmentally friendly method, suitable for full-scale (decentralized) wastewater treatment

    Combining a novel biofilm reactor with a constructed wetland for rural, decentralized wastewater treatment

    No full text
    A novel waterfall aeration biofilm reactor integrated with a constructed wetland (WABR-CW) system was developed to meet the challenge of decentralized wastewater treatment with a focus on nutrient removal. In a lab-scale experiment of 70 days, the WABR-CW showed a high removal efficiency for COD (85-98 %), NH4+-N (100 %), TN (60-90 %) and TP (85 %-95 %), even when different organic loading rates (OLR) were used. The CW was responsible for improving the overall performance in view of an increased nutrient removal. The CW offers denitrification capacity when the OLR is not optimal for the WABR. Based on the lab-scale experiment, a pilotscale WABR-CW was built and tested for aquaculture wastewater treatment and reuse. A total of 63 m3 wastewater was treated of which 56.7 m3 was reused. Furthermore, the microbial structure of the WABR-CW system was investigated. A metabolic analysis highlighted the N and C metabolic pathways and functional genes distribution in the WABR-CW system. Next generation sequencing not only linked the pollutants removal performance and microbial encoding genes but also disclosed the potential ability of WABR-CW to treat more polluted and more complex wastewater. The outcomes of this study provide scale-up results and a better understanding of the functioning of the WABR-CW.A novel waterfall aeration biofilm reactor integrated with a constructed wetland (WABR-CW) system was developed to meet the challenge of decentralized wastewater treatment with a focus on nutrient removal. In a lab-scale experiment of 70 days, the WABR-CW showed a high removal efficiency for COD (85-98 %), NH4+-N (100 %), TN (60-90 %) and TP (85 %-95 %), even when different organic loading rates (OLR) were used. The CW was responsible for improving the overall performance in view of an increased nutrient removal. The CW offers denitrification capacity when the OLR is not optimal for the WABR. Based on the lab-scale experiment, a pilotscale WABR-CW was built and tested for aquaculture wastewater treatment and reuse. A total of 63 m3 wastewater was treated of which 56.7 m3 was reused. Furthermore, the microbial structure of the WABR-CW system was investigated. A metabolic analysis highlighted the N and C metabolic pathways and functional genes distribution in the WABR-CW system. Next generation sequencing not only linked the pollutants removal performance and microbial encoding genes but also disclosed the potential ability of WABR-CW to treat more polluted and more complex wastewater. The outcomes of this study provide scale-up results and a better understanding of the functioning of the WABR-CW.A
    corecore