71 research outputs found
MicroRNAmediated regulation in biological systems with oscillatory behavior
As a class of small noncoding RNAs, microRNAs (miRNAs) regulate stability or translation of mRNA transcripts. Some reports bring new insights into possible roles of microRNAs in modulating cell cycle. In this paper, we focus on the mechanism and effectiveness of microRNA-mediated regulation in the cell cycle. We first describe two specific regulatory circuits that incorporate base-pairing microRNAs and show their fine-tuning roles in the modulation of periodic behavior. Furthermore, we analyze the effects of miR369-3 on the modulation of the cell cycle, confirming that miR369-3 plays a role in shortening the period of the cell cycle. These results are consistent with experimental observations
A Novel Porous Carrier Found in Nature for Nanocomposite Materials Preparation: A Case Study of Artemia Egg Shell-Supported TiO 2 for Formaldehyde Removal
Artemia egg shells have an asymptotic sized pore structure (pore diameter: 500 nm-2500 nm), which could be used as a porous carrier for the preparation of nanocomposite materials. The objective of the present study was to prepare shell-supported TiO 2 using a naturally porous carrier, Artemia egg shell, and to exhibit a case study of shell-supported TiO 2 for formaldehyde removal. Characterization of shell-TiO 2 using SEM-EDS, TEM, and XRD proved that Artemia shell with asymptotic reduction pores (pore diameter: 500 nm-2500 nm) can be used as the carrier for nanocomposite materials. Artemia egg shell-supported TiO 2 in polycrystalline-like nanostructures can be used for the high efficiency removal (adsorption and degradation) of formaldehyde under visible light. Our results suggest that iron, one of the shell's components, should broaden the absorption of visible light and enhance the photocatalytic efficiency of nanotitanium dioxide under visible light. Due to their interesting absorption and formaldehyde removal qualities, Artemia egg shell, as a novel naturally porous carrier for nanocomposite materials preparation, especially in the preparation of nanocatalysts, is worthy of further study
Adult Age Differences in Parafoveal Preview Effects during Reading: Evidence from Chinese
We investigated parafoveal processing by 44 young (18-30 years) and 44 older (65+ years) Chinese readers using eye movement measures. Participants read sentences which included an invisible boundary after a two-character word (N) and before two one-character words (N+1, N+2). Before a reader’s gaze crossed the boundary, N+1 and N+2 were shown normally or masked (i.e., as valid/invalid previews), after which they reverted to normal. Young adults obtained preview benefits (a processing advantage for valid over invalid previews) for both words. However, older adults obtained N+2 preview benefits only when N+1 was valid, suggesting their parafoveal processing is more limited
Deep Anatomical Federated Network (Dafne): an open client/server framework for the continuous collaborative improvement of deep-learning-based medical image segmentation
Semantic segmentation is a crucial step to extract quantitative information
from medical (and, specifically, radiological) images to aid the diagnostic
process, clinical follow-up. and to generate biomarkers for clinical research.
In recent years, machine learning algorithms have become the primary tool for
this task. However, its real-world performance is heavily reliant on the
comprehensiveness of training data. Dafne is the first decentralized,
collaborative solution that implements continuously evolving deep learning
models exploiting the collective knowledge of the users of the system. In the
Dafne workflow, the result of each automated segmentation is refined by the
user through an integrated interface, so that the new information is used to
continuously expand the training pool via federated incremental learning. The
models deployed through Dafne are able to improve their performance over time
and to generalize to data types not seen in the training sets, thus becoming a
viable and practical solution for real-life medical segmentation tasks.Comment: 10 pages (main body), 5 figures. Work partially presented at the 2021
RSNA conference and at the 2023 ISMRM conference In this new version: added
author and change in the acknowledgmen
Chip-scale solar thermal electrical power generation
There is an urgent need for alternative compact technologies that can derive and store energy from the sun, especially the large amount of solar heat that is not effectively used for power generation. Here, we report a combination of solution- and neat-film-based molecular solar thermal (MOST) systems, where solar energy can be stored as chemical energy and released as heat, with microfabricated thermoelectric generators to produce electricity when solar radiation is not available. The photophysical properties of two MOST couples are characterized both in liquid with a catalytical cycling setup and in a phase-interconvertible neat film. Their suitable photophysical properties let us combine them individually with a microelectromechanical ultrathin thermoelectric chip to use the stored solar energy for electrical power generation. The generator can produce, as a proof of concept, a power output of up to 0.1 nW (power output per unit volume up to 1.3 W m−3). Our results demonstrate that such a molecular thermal power generation system has a high potential to store and transfer solar power into electricity and is thus potentially independent of geographical restrictions.This work was supported by the K. & A. Wallenberg Foundation, the Swedish Foundation for Strategic Research, the Swedish Research Council Formas, the Swedish Energy Agency, the European Research Council (ERC) under grant agreement CoG, PHOTHERM - 101002131, the Catalan Institute of Advanced Studies (ICREA), and the European Union's Horizon 2020 Framework Programme under grant agreement no. 951801. The MEMS-TEG chip manufacture and experimentation were supported by the National Natural Science Foundation of China (grant 51776126). The authors would like to thank the Center for Advanced Electronic Materials and Devices (AEMD) and Instrumental Analysis Center of Shanghai Jiao Tong University (SJTU) and the startup fund of Shanghai Jiao Tong University. We thank Dr. Sarah Lerch and Prof. Ben Greatrex for reading and commenting on the manuscript. We acknowledge Neuroncollective.com and Daniel Spacek for the graphical abstract.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
Genome-Wide Association Study on Root Traits Under Different Growing Environments in Wheat (Triticum aestivum L.)
Plant roots are critical for water and nutrient acquisition, environmental adaptation, and yield formation. Herein, 196 wheat accessions from the Huang-Huai Wheat Region of China were collected to investigate six root traits at seedling stage under three growing environments [indoor hydroponic culture (IHC), outdoor hydroponic culture (OHC), and outdoor pot culture (OPC)] and the root dry weight (RDW) under OPC at four growth stages and four yield traits in four environments. Additionally, a genome-wide association study was performed with a Wheat 660K SNP Array. The results showed that the root traits varied most under OPC, followed by those under both OHC and IHC, and root elongation under hydroponic culture was faster than that under pot culture. Root traits under OHC might help predict those under OPC. Moreover, root traits were significantly negatively correlated with grain yield (GY) and grains per spike (GPS), positively correlated with thousand-kernel weight (TKW), and weakly correlated with number of spikes per area (SPA). Twelve stable chromosomal regions associated with the root traits were detected on chromosomes 1D, 2A, 4A, 4B, 5B, 6D, and unmapped markers. Among them, a stable chromosomal interval from 737.85 to 742.00 Mb on chromosome 4A, which regulated total root length (TRL), was identified under three growing environments. Linkage disequilibrium (LD) blocks were used to identify 27 genes related to root development. Three genes TraesCS4A02G484200, TraesCS4A02G484800, TraesCS4A02G493800, and TraesCS4A02G493900, are involved in cell elongation and differentiation and expressed at high levels in root tissues. Another vital co-localization interval on chromosome 5B (397.72–410.88 Mb) was associated with not only RDW under OHC and OPC but also TKW
Indium Tin Oxide@Carbon Core–Shell Nanowire and Jagged Indium Tin Oxide Nanowire
This paper reports two new indium tin oxide (ITO)-based nanostructures, namely ITO@carbon core–shell nanowire and jagged ITO nanowire. The ITO@carbon core–shell nanowires (~50 nm in diameter, 1–5 μm in length,) were prepared by a chemical vapor deposition process from commercial ITO nanoparticles. A carbon overlayer (~5–10 in thickness) was observed around ITO nanowire core, which was in situ formed by the catalytic decomposition of acetylene gas. This carbon overlayer could be easily removed after calcination in air at an elevated temperature of 700°C, thus forming jagged ITO nanowires (~40–45 nm in diameter). The growth mechanisms of ITO@carbon core–shell nanowire and jagged ITO nanowire were also suggested
Lethal perinatal hypophosphatasia caused by a novel compound heterozygous mutation: a case report
Abstract Background Hypophosphatasia (HPP) is a rare hereditary disorder characterized by defective bone and tooth mineralization and deficiency of tissue non-specific alkaline phosphatase (TNAP) activity. The clinical presentation of HPP is highly variable, and the prognosis for the infantile form is poor. Case presentation This study reports a male infant diagnosed with lethal perinatal HPP. His gene analysis showed two heterozygous missense variants c.406C > T (p.R136C) and c.461C > T (p.A154V). The two mutations originated separately from his parents, consistent with autosomal recessive perinatal HPP, and the c.461C > T (p.A154V) was the novel mutation. Three-level structure model provide an explanation of the two mutated alleles correlating with the lethal phenotype of our patient. Results of SIFT, PolyPhen_2, and REVEL showed two mutations were pathogenic. Conclusions We demonstrated a case of perinatal lethal HPP caused by two heterozygous mutations, and one of which was novel. This finding will prove relevant for genetic counseling and perinatal gene testing for affected families
Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries
All high‐capacity anodes for lithium‐ion (Li‐ion) batteries, such as those based on tin (Sn) and silicon (Si), suffer from large volume changes during cycling with lithium ions, and their high capacities can be only achieved in the first few cycles. We design and synthesize a unique four‐layer yolk–shell tin–carbon (Sn–C) nanotube array to address this problem. The shape and size of the exterior Sn nanotube@carbon core–shell layer, the encapsulated interior Sn nanowire@carbon nanotube core–shell layer, and the filling level of each layer can be all controlled by adjusting the experimental conditions. Such a nanostructure has not been reported for any metal or metal oxide‐based material. Owing to the special design of the electrode structure, the four‐layer hierarchical structure demonstrates excellent Li‐ion storage properties in terms of high capacity, long cycle life, and high rate performance
Modeling and Vulnerability Analysis of Cyber-Physical Power Systems Considering Network Topology and Power Flow Properties
Conventional power systems are developing into cyber-physical power systems (CPPS) with wide applications of communication, computer and control technologies. However, multiple practical cases show that the failure of cyber layers is a major factor leading to blackouts. Therefore, it is necessary to discuss the cascading failure process considering cyber layer failures and analyze the vulnerability of CPPS. In this paper, a CPPS model, which consists of cyber layer, physical layer and cyber-physical interface, is presented using complex network theory. Considering power flow properties, the impacts of cyber node failures on the cascading failure propagation process are studied. Moreover, two vulnerability indices are established from the perspective of both network structure and power flow properties. A vulnerability analysis method is proposed, and the CPPS performance before and after cascading failures is analyzed by the proposed method to calculate vulnerability indices. In the case study, three typical scenarios are analyzed to illustrate the method, and vulnerabilities under different interface strategies and attack strategies are compared. Two thresholds are proposed to value the CPPS vulnerability roughly. The results show that CPPS is more vulnerable under malicious attacks and cyber nodes with high indices are vulnerable points which should be reinforced
- …