28,458 research outputs found

    Maximizing Friend-Making Likelihood for Social Activity Organization

    Full text link
    The social presence theory in social psychology suggests that computer-mediated online interactions are inferior to face-to-face, in-person interactions. In this paper, we consider the scenarios of organizing in person friend-making social activities via online social networks (OSNs) and formulate a new research problem, namely, Hop-bounded Maximum Group Friending (HMGF), by modeling both existing friendships and the likelihood of new friend making. To find a set of attendees for socialization activities, HMGF is unique and challenging due to the interplay of the group size, the constraint on existing friendships and the objective function on the likelihood of friend making. We prove that HMGF is NP-Hard, and no approximation algorithm exists unless P = NP. We then propose an error-bounded approximation algorithm to efficiently obtain the solutions very close to the optimal solutions. We conduct a user study to validate our problem formulation and per- form extensive experiments on real datasets to demonstrate the efficiency and effectiveness of our proposed algorithm

    Made-to-measure galaxy models - III Modelling with Milky Way observations

    Full text link
    We demonstrate how the Syer & Tremaine made-to-measure method of stellar dynamical modelling can be adapted to model a rotating galactic bar. We validate our made-to-measure changes using observations constructed from the existing Shen et al. (2010) N-body model of the Milky Way bar, together with kinematic observations of the Milky Way bulge and bar taken by the Bulge Radial Velocity Assay (BRAVA). Our results for a combined determination of the bar angle and bar pattern speed (~30 degrees and ~40 km/s/kpc) are consistent with those determined by the N-body model. Whilst the made-to-measure techniques we have developed are applied using a particular N-body model and observational data set, they are in fact general and could be applied to other Milky Way modelling scenarios utilising different N-body models and data sets. Additionally, we use the exercise as a vehicle for illustrating how N-body and made-to-measure methods might be combined into a more effective method.Comment: Accepted for publication, 10 pages, 7 figure

    Cross-Domain Learning for Classifying Propaganda in Online Contents

    Get PDF
    As news and social media exhibit an increasing amount of manipulative polarized content, detecting such propaganda has received attention as a new task for content analysis. Prior work has focused on supervised learning with training data from the same domain. However, as propaganda can be subtle and keeps evolving, manual identification and proper labeling are very demanding. As a consequence, training data is a major bottleneck. In this paper, we tackle this bottleneck and present an approach to leverage cross-domain learning, based on labeled documents and sentences from news and tweets, as well as political speeches with a clear difference in their degrees of being propagandistic. We devise informative features and build various classifiers for propaganda labeling, using cross-domain learning. Our experiments demonstrate the usefulness of this approach, and identify difficulties and limitations in various configurations of sources and targets for the transfer step. We further analyze the influence of various features, and characterize salient indicators of propaganda

    Treatment of Linear and Nonlinear Dielectric Property of Molecular Monolayer and Submonolayer with Microscopic Dipole Lattice Model: I. Second Harmonic Generation and Sum-Frequency Generation

    Full text link
    In the currently accepted models of the nonlinear optics, the nonlinear radiation was treated as the result of an infinitesimally thin polarization sheet layer, and a three layer model was generally employed. The direct consequence of this approach is that an apriori dielectric constant, which still does not have a clear definition, has to be assigned to this polarization layer. Because the Second Harmonic Generation (SHG) and the Sum-Frequency Generation vibrational Spectroscopy (SFG-VS) have been proven as the sensitive probes for interfaces with the submonolayer coverage, the treatment based on the more realistic discrete induced dipole model needs to be developed. Here we show that following the molecular optics theory approach the SHG, as well as the SFG-VS, radiation from the monolayer or submonolayer at an interface can be rigorously treated as the radiation from an induced dipole lattice at the interface. In this approach, the introduction of the polarization sheet is no longer necessary. Therefore, the ambiguity of the unaccounted dielectric constant of the polarization layer is no longer an issue. Moreover, the anisotropic two dimensional microscopic local field factors can be explicitly expressed with the linear polarizability tensors of the interfacial molecules. Based on the planewise dipole sum rule in the molecular monolayer, crucial experimental tests of this microscopic treatment with SHG and SFG-VS are discussed. Many puzzles in the literature of surface SHG and SFG spectroscopy studies can also be understood or resolved in this framework. This new treatment may provide a solid basis for the quantitative analysis in the surface SHG and SFG studies.Comment: 23 pages, 3 figure

    Loop Formulas for Description Logic Programs

    Full text link
    Description Logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful formalism for the integration of answer set programming with description logics, for the Semantic Web. In this paper, we generalize the notions of completion and loop formulas of logic programs to description logic programs and show that the answer sets of a dl-program can be precisely captured by the models of its completion and loop formulas. Furthermore, we propose a new, alternative semantics for dl-programs, called the {\em canonical answer set semantics}, which is defined by the models of completion that satisfy what are called canonical loop formulas. A desirable property of canonical answer sets is that they are free of circular justifications. Some properties of canonical answer sets are also explored.Comment: 29 pages, 1 figures (in pdf), a short version appeared in ICLP'1

    Impact of Natural Blind Spot Location on Perimetry.

    Get PDF
    We study the spatial distribution of natural blind spot location (NBSL) and its impact on perimetry. Pattern deviation (PD) values of 11,449 reliable visual fields (VFs) that are defined as clinically unaffected based on summary indices were extracted from 11,449 glaucoma patients. We modeled NBSL distribution using a two-dimensional non-linear regression approach and correlated NBSL with spherical equivalent (SE). Additionally, we compared PD values of groups with longer and shorter distances than median, and larger and smaller angles than median between NBSL and fixation. Mean and standard deviation of horizontal and vertical NBSL were 14.33° ± 1.37° and -2.06° ± 1.27°, respectively. SE decreased with increasing NBSL (correlation: r = -0.14, p \u3c 0.001). For NBSL distances longer than median distance (14.32°), average PD values decreased in the upper central (average difference for significant points (ADSP): -0.18 dB) and increased in the lower nasal VF region (ADSP: 0.14 dB). For angles in the direction of upper hemifield relative to the median angle (-8.13°), PD values decreased in lower nasal (ADSP: -0.11 dB) and increased in upper temporal VF areas (ADSP: 0.19 dB). In conclusion, we demonstrate that NBSL has a systematic effect on the spatial distribution of VF sensitivity
    • …
    corecore