363 research outputs found

    Simulating periodic systems on quantum computer

    Full text link
    The variational quantum eigensolver (VQE) is one of the most appealing quantum algorithms to simulate electronic structure properties of molecules on near-term noisy intermediate-scale quantum devices. In this work, we generalize the VQE algorithm for simulating extended systems. However, the numerical study of an one-dimensional (1D) infinite hydrogen chain using existing VQE algorithms shows a remarkable deviation of the ground state energy with respect to the exact full configuration interaction (FCI) result. Here, we present two schemes to improve the accuracy of quantum simulations for extended systems. The first one is a modified VQE algorithm, which introduces an unitary transformation of Hartree-Fock orbitals to avoid the complex Hamiltonian. The second one is a Post-VQE approach combining VQE with the quantum subspace expansion approach (VQE/QSE). Numerical benchmark calculations demonstrate that both of two schemes provide an accurate enough description of the potential energy curve of the 1D hydrogen chain. In addition, excited states computed with the VQE/QSE approach also agree very well with FCI results

    Human performance analysis of processes for retrieving Beidou satellite navigation system during breakdown

    Get PDF
    Satellite navigation systems provide continuous, timely, and accurate signals of location, speed, and time to users all over the world. Although the running of these systems has become highly automated, the human operator is still vital for its continued operation, especially when certain equipment failures occur. In this paper, we examined 180 incidents of one particular type of equipment failure and the whole recovery process as recorded in the log files from a ground control center of the Beidou satellite navigation system. We extracted the information, including the technical description of the failure, the time when the fault occurred, the full recovery time, and the demographic information of the team members on the shift responsible for responding to the failure. We then transformed these information into the cognitive complexity of the task, time of day, shift handover period, and team skill composition. Multiple regression analysis showed that task complexity and shift handover were key predictors of recovery time. Time of day also influenced the recovery time, during midnight to 4 a.m., operators made longer responses. We also found that the fault handling processes could be improved if the team’s most adept member is more skillful at that role than in other teams. We discussed the theoretical and practical implication of this study

    RANKL/RANK promotes the migration of gastric cancer cells by interacting with EGFR

    Get PDF
    BACKGROUND: The incidence and mortality rates of gastric cancer (GC) rank in top five among all malignant tumors. Chemokines and their receptor-signaling pathways reportedly play key roles in the metastasis of malignant tumor cells. Receptor activator of nuclear factor ÎșB ligand (RANKL) is a member of the tumor necrosis factor family, with strong chemokine-like effects. Some studies have pointed out that the RANKL/RANK pathway is vital for the metastasis of cancer cells, but the specific mechanisms in GC remain poorly understood. RESULTS: This study reports original findings in cell culture models and in patients with GC. Flow cytometry and western blotting analyses showed that RANK was expressed in BGC-823 and SGC-7901 cells in particular. Chemotaxis experiments and wound healing assay suggested that RANKL spurred the migration of GC cells. This effect was offset by osteoprotegerin (OPG), a decoy receptor for RANKL. RANKL contributed to the activation of human epidermal growth factor receptor (HER) family pathways. The lipid raft core protein, caveolin 1 (Cav-1), interacted with both RANK and human epidermal growth factor receptor-1(EGFR). Knockdown of Cav-1 blocked the activation of EGFR and cell migration induced by RANKL. Moreover, RANK-positive GC patients who displayed higher levels of EGFR expression had poor overall survival. CONCLUSIONS: In summary, we confirmed that with the promotion of RANKL, RANK and EGFR can form complexes with the lipid raft core protein Cav-1, which together promote GC cell migration. The formation of the RANK-Cav-1-EGFR complex provides a novel mechanism for the metastasis of GC. These observations warrant confirmation in independent studies, in vitro and in vivo. They also inform future drug target discovery research and innovation in the treatment of GC progression

    Flux regulation through glycolysis and respiration is balanced by inositol pyrophosphates in yeast

    Get PDF
    Although many prokaryotes have glycolysis alternatives, it\u27s considered as the only energy-generating glucose catabolic pathway in eukaryotes. Here, we managed to create a hybrid-glycolysis yeast. Subsequently, we identified an inositol pyrophosphatase encoded by OCA5 that could regulate glycolysis and respiration by adjusting 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) levels. 5-InsP7 levels could regulate the expression of genes involved in glycolysis and respiration, representing a global mechanism that could sense ATP levels and regulate central carbon metabolism. The hybrid-glycolysis yeast did not produce ethanol during growth under excess glucose and could produce 2.68 g/L free fatty acids, which is the highest reported production in shake flask of Saccharomyces cerevisiae. This study demonstrated the significance of hybrid-glycolysis yeast and determined Oca5 as an inositol pyrophosphatase controlling the balance between glycolysis and respiration, which may shed light on the role of inositol pyrophosphates in regulating eukaryotic metabolism

    Plasma microRNA Profiles as a Potential Biomarker in Differentiating Adult-Onset Still's Disease From Sepsis

    Get PDF
    Adult-onset Still's disease (AOSD) is a systemic inflammatory disease characterized by cytokine storm. However, a diagnostic test for AOSD in clinical use is yet to be validated. The aim of our study was to identify non-invasive biomarkers with high specificity and sensitivity to diagnosis of AOSD. MicroRNA (miRNA) profiles in PBMC from new-onset AOSD patients without any treatment and healthy controls (HCs) were analyzed by miRNA deep sequencing. Plasma samples from 100 AOSD patients and 60 HCs were used to validated the expression levels of miRNA by qRT-PCR. The correlations between expression levels of miRNAs and clinical manifestations were analyzed using advanced statistical models. We found that plasma samples from AOSD patients showed a distinct miRNA expression profile. Five miRNAs (miR-142-5p, miR-101-3p, miR-29a-3p, miR-29c-3p, and miR-141-3p) were significantly upregulated in plasma of AOSD patients compared with HCs both in training and validation sets. We discovered a panel including 3 miRNAs (miR-142-5p, miR-101-3p, and miR-29a-3p) that can predict the probability of AOSD with an area under the receiver operating characteristic (ROC) curve of 0.8250 in training and validation sets. Moreover, the expression levels of 5 miRNAs were significantly higher in active AOSD patients compared with those in inactive patients. In addition, elevated level of miR-101-3p was found in AOSD patients with fever, sore throat and arthralgia symptoms; the miR-101-3p was also positively correlated with the levels of IL-6 and TNF-α in serum. Furthermore, five miRNAs (miR-142-5p, miR-101-3p, miR-29c-3p, miR-29a-3p, and miR-141-3p) expressed in plasma were significantly higher in AOSD patients than in sepsis patients (P < 0.05). The AUC value of 4-miRNA panel (miR-142-5p, miR-101-3p, miR-29c-3p, and miR-141-3p) for AOSD diagnosis from sepsis was 0.8448, revealing the potentially diagnostic value to distinguish AOSD patients from sepsis patients. Our results have identified a specific plasma miRNA signature that may serve as a potential non-invasive biomarker for diagnosis of AOSD and monitoring disease activity

    Pattern-Selection Based Power Analysis and Discrimination of Low- and High-Grade Myelodysplastic Syndromes Study Using SNP Arrays

    Get PDF
    Copy Number Aberration (CNA) in myelodysplastic syndromes (MDS) study using single nucleotide polymorphism (SNP) arrays have been received increasingly attentions in the recent years. In the current study, a new Constraint Moving Average (CMA) algorithm is adopted to determine the regions of CNA regions first. In addition to large regions of CNA, using the proposed CMA algorithm, small regions of CNA can also be detected. Real-time Polymerase Chain Reaction (qPCR) results prove that the CMA algorithm presents an insightful discovery of both large and subtle regions. Based on the results of CMA, two independent applications are studied. The first one is power analysis for sample estimation. An accurate estimation of sample size needed for the desired purpose of an experiment will be important for effort-efficiency and cost-effectiveness. The power analysis is performed to determine the minimum sample size required for ensuring at least () detected regions statistically different from normal references. As expected, power increase with increasing sample size for a fixed significance level. The second application is the distinguishment of high-grade MDS patients from low-grade ones. We propose to calculate the General Variant Level (GVL) score to integrate the general information of each patient at genotype level, and use it as the unified measurement for the classification. Traditional MDS classifications usually refer to cell morphology and The International Prognostic Scoring System (IPSS), which belongs to the classification at the phenotype level. The proposed GVL score integrates the information of CNA region, the number of abnormal chromosomes and the total number of the altered SNPs at the genotype level. Statistical tests indicate that the high and low grade MDS patients can be well separated by GVL score, which appears to correlate better with clinical outcome than the traditional classification approaches using morphology and IPSS sore at the phenotype level

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    To Leave or Not to Leave? Understanding Task Stickiness in Smartphone Activity Recommendations

    No full text
    Recent intelligent smartphone assistants can provide proactive activity recommendations for what users might want to do in the upcoming moments. However, many of these recommendations may not be accepted because the ongoing tasks performed by users vary in their &quot;stickiness&quot; (reluctance to switch away). Past studies suggest that user states in their ongoing tasks might reflect task stickiness. Still, it has not been systematically tested among a comprehensive set of tasks for everyday smartphone users. In this study, we sought to examine the impacts of individual and task characteristics on users&rsquo; task stickiness in the context of mobile recommendations based on a large set of tasks. In total, 220 participants completed an online evaluation assessing 55 everyday smartphone activities summarized from literature and interviews. They evaluated each task&rsquo;s perceived task load, involvement, and stickiness. Individual characteristics such as boredom proneness were also collected. Hierarchical linear modeling showed that: (1) Task load and involvement positively predicted task stickiness. Users may not accept new recommendations when their ongoing tasks are demanding and engaging. (2) Boredom proneness reduced the effect of task load. For people who are more likely to feel bored, their intention to stay in the current task was maintained even when the task load dropped. This study suggests that recommendation system designers should consider both task characteristics and individual differences to enhance contextual appropriateness and personalization.</p
    • 

    corecore