17 research outputs found

    Linking extinction risk to the economic and nutritional value of sharks in small-scale fisheries

    Get PDF
    To achieve sustainable shark fisheries, it is key to understand not only the biological drivers and environmental consequences of overfishing, but also the social and economic drivers of fisher behavior. The extinction risk of sharks is highest in coastal tropical waters, where small-scale fisheries are most prevalent. Small-scale fisheries provide a critical source of economic and nutritional security to coastal communities, and these fishers are among the most vulnerable social and economic groups. We used Kenya’s and Zanzibar’s smallscale shark fisheries, which are illustrative of the many data-poor, small-scale shark fisheries worldwide, as case studies to explore the relationship between extinction risk and the economic and nutritional value of sharks. To achieve this, we combined existing data on shark landings, extinction risk, and nutritional value with sales data at 16 key landing sites and information from interviews with 476 fishers. Shark fisheries were an important source of economic and nutritional security, valued at >US$4 million annually and providing enough nutrition for tens of thousands of people. Economically and nutritionally, catches were dominated by threatened species (72.7% and 64.6–89.7%, respectively). The most economically valuable species were large and slow to reproduce (e.g. mobulid rays, wedgefish, and bull, silky, and mako sharks) and therefore more likely to be threatened with extinction. Given the financial incentive and intensive fishing pressure, small-scale fisheries are undoubtedly major contributors to the decline of threatened coastal shark species. In the absence of effective fisheries management and enforcement, we argue that within smallscale fisheries the conditions exist for an economically incentivized feedback loop in which vulnerable fishers are driven to persistently overfish vulnerable and declining shark species. To protect these species from extinction, this feedback loop must be broken

    Marine megafauna catch in southwestern Indian Ocean small-scale fisheries from landings data

    Get PDF
    The measurable impacts of small-scale fisheries on coastal marine ecosystems and vulnerable megafauna species (elasmobranchs, marine mammals and sea turtles) within them are largely unknown, particularly in developing countries. This study assesses megafauna catch and composition in handline, longline, bottom-set and drift gillnet fisheries of the southwestern Indian Ocean. Observers monitored 21 landing sites across Kenya, Zanzibar and northern Madagascar for 12 months in 2016–17. Landings (n = 4666) identified 59 species, including three sea turtles, two small cetaceans and one sirenian (Dugong dugon). Primary gear threats to investigated taxa were identified as bottom-set gillnets (marine mammals, sea turtles and batoids), drift gillnets (marine mammals, batoids and sharks) and longlines (sharks). Overall, catch was dominated by small and moderately sized coastal requiem sharks (Carcharhiniformes) and whiprays (Dasyatidae). Larger coastal and oceanic elasmobranchs were also recorded in substantial numbers as were a number of deeper-water species. The diversity of catch demonstrates the potential for small-scale fisheries to have impacts across a number of ecosystems. From the observed catch rates we calculated annual regional elasmobranch landings to be 35,445 (95%CI 30,478–40,412) tonnes, 72.6% more than officially reported in 2016 and 129.2% more than the 10-year average (2006–16), constituting 2.48 (95%CI 2.20–2.66) million individuals. Productivity-Susceptibility Analyses indicate that small and moderately sized elasmobranchs are most vulnerable in the small-scale fisheries. The study demonstrates substantial underreporting of catches in small-scale fisheries and highlights the need to expand efforts globally to assess the extent and impact of small-scale fisheries on vulnerable marine species and their respective ecosystems

    Marine megafauna interactions with small-scale fisheries in the southwestern Indian Ocean: a review of status and challenges for research and management

    Get PDF
    In developing regions, coastal communities are particularly dependent on small-scale fisheries for food security and income. However, information on the scale and impacts of small-scale fisheries on coastal marine ecosystems are frequently lacking. Large marine vertebrates (marine mammals, sea turtles and chondrichthyans) are often among the first species to experience declines due to fisheries. This paper reviews the interactions between small-scale fisheries and vulnerable marine megafauna in the southwestern Indian Ocean. We highlight an urgent need for proper documentation, monitoring and assessment at the regional level of small-scale fisheries and the megafauna affected by them to inform evidence-based fisheries management. Catch and landings data are generally of poor quality and resolution with compositional data, where available, mostly anecdotal or heavily biased towards easily identifiable species. There is also limited understanding of fisheries effort, most of which relies on metrics unsuitable for proper assessment. Management strategies (where they exist) are often created without strong evidence bases or understanding of the reliance of fishers on resources. Consequently, it is not possible to effectively assess the current status and ensure the sustainability of these species groups; with indications of overexploitation in several areas. To address these issues, a regionally collaborative approach between government and non-governmental organisations, independent researchers and institutions, and small-scale fisheries stakeholders is required. In combination with good governance practices, appropriate and effective, evidence-based management can be formulated to sustain these resources, the marine ecosystems they are intrinsically linked to and the livelihoods of coastal communities that are tied to them

    Spatial patterns and environmental risks of ringnet fishing along the Kenyan coast

    No full text
    Ringnet fishing began in the early 20th century and is practised worldwide, mainly to target nearshore pelagic species. The method was introduced to Kenya’s coastal waters by migrant fishers from Tanzania. However, the impacts of this fishing gear remain poorly assessed. We assessed the spatial distribution of ringnet fishing effort and its possible effects on ecosystem components, such as coral reefs, marine megafauna and marine protected areas,  on the South coast of Kenya. We tracked 89 ringnet fishing trips made from December 2015 to January 2016 and used spatial  multicriteria analysis to determine hotspots of possible environmental risks. The results showed that habitat type and bathymetric profile influenced the spatial distribution of ringnet fishing effort. Mixed seagrass and coral habitats had the highest concentration of the effort. Most of the habitats in the study area were moderately exposed to the impacts of the ringnet fishery. The study identifies high-risk areas that require spatial measures to minimise possible environmental risks of the gear both to habitats and to endangered sea turtles. Keywords: coral reefs, habitat distribution, fishing pressure, marine spatial planning, risk assessment, sea turtles, spatial multicriteria analysis Coastal and marine ecosystems worldwide are experiencing immense pressure from overfishing, land-based pollution, habitat degradation and the increasin

    Diversity of Shallow-Water Species in Prawn Trawling: A Case Study of Malindi–Ungwana Bay, Kenya

    No full text
    Bottom trawling is a common fishing method that targets bottom-dwelling fisheries resources. It is non-selective and large amounts of by-catch are discarded, raising serious sustainability and ecosystem conservation concerns. In this study, a shallow-water bottom-trawl fishery was evaluated using logbook catch data between 2011 and 2019 and the species composition data collected by fisheries observers between 2016 and 2019. The logbook data showed a twenty-fold increase in the annual catches with a ten-fold increase in fishing effort and an increase in the proportion of retained catch from 2011 to 2019. The observer data showed that for prawn, the by-catch ratio ranged from 1:3 to 1:9 during the four years. Multivariate analysis revealed significant differences between the compositions of retained and discarded catches mainly attributed to Pellona ditchela, Nematopalaemontenuipes, and Secutor insidiator. There was no significant decline in species diversity and the trophic level of the catches over the 4-year observer period indicating no marked impact of trawling on the stock at the current level of fishing effort. This study provides baseline information on the prawn trawl fishery against which the performance of the management regulations may be evaluated towards the Ecosystem Approach to Fisheries management

    Diversity of Shallow-Water Species in Prawn Trawling : A Case Study of Malindi–Ungwana Bay, Kenya

    No full text
    Bottom trawling is a common fishing method that targets bottom-dwelling fisheries resources. It is non-selective and large amounts of by-catch are discarded, raising serious sustainability and ecosystem conservation concerns. In this study, a shallow-water bottom-trawl fishery was evaluated using logbook catch data between 2011 and 2019 and the species composition data collected by fisheries observers between 2016 and 2019. The logbook data showed a twenty-fold increase in the annual catches with a ten-fold increase in fishing effort and an increase in the proportion of retained catch from 2011 to 2019. The observer data showed that for prawn, the by-catch ratio ranged from 1:3 to 1:9 during the four years. Multivariate analysis revealed significant differences between the compositions of retained and discarded catches mainly attributed to Pellona ditchela, Nematopalaemontenuipes, and Secutor insidiator. There was no significant decline in species diversity and the trophic level of the catches over the 4-year observer period indicating no marked impact of trawling on the stock at the current level of fishing effort. This study provides baseline information on the prawn trawl fishery against which the performance of the management regulations may be evaluated towards the Ecosystem Approach to Fisheries management

    Diversity of Shallow-Water Species in Prawn Trawling: A Case Study of Malindi–Ungwana Bay, Kenya

    No full text
    Bottom trawling is a common fishing method that targets bottom-dwelling fisheries resources. It is non-selective and large amounts of by-catch are discarded, raising serious sustainability and ecosystem conservation concerns. In this study, a shallow-water bottom-trawl fishery was evaluated using logbook catch data between 2011 and 2019 and the species composition data collected by fisheries observers between 2016 and 2019. The logbook data showed a twenty-fold increase in the annual catches with a ten-fold increase in fishing effort and an increase in the proportion of retained catch from 2011 to 2019. The observer data showed that for prawn, the by-catch ratio ranged from 1:3 to 1:9 during the four years. Multivariate analysis revealed significant differences between the compositions of retained and discarded catches mainly attributed to Pellona ditchela, Nematopalaemontenuipes, and Secutor insidiator. There was no significant decline in species diversity and the trophic level of the catches over the 4-year observer period indicating no marked impact of trawling on the stock at the current level of fishing effort. This study provides baseline information on the prawn trawl fishery against which the performance of the management regulations may be evaluated towards the Ecosystem Approach to Fisheries management
    corecore