6,510 research outputs found
Providing structural modules with self-integrity monitoring
With the advent of complex space structures (i.e., U.S. Space Station), the need for methods for remotely detecting structural damage will become greater. Some of these structures will have hundreds of individual structural elements (i.e., strut members). Should some of them become damaged, it could be virtually impossible to detect it using visual or similar inspection techniques. The damage of only a few individual members may or may not be a serious problem. However, should a significant number of the members be damaged, a significant problem could be created. The implementation of an appropriate remote damage detection scheme would greatly reduce the likelihood of a serious problem related to structural damage ever occurring. This report presents the results of the research conducted on remote structural damage detection approaches and the related mathematical algorithms. The research was conducted for the Small Business Innovation and Research (SBIR) Phase 2 National Aeronautics and Space Administration (NASA) Contract NAS7-961
Adaptive antenna arrays for satellite communications: Design and testing
When two separate antennas are used with each feedback loop to decorrelate noise, the antennas should be located such that the phase of the interfering signal in the two antennas is the same while the noise in them is uncorrelated. Thus, the antenna patterns and spatial distribution of the auxiliary antennas are quite important and should be carefully selected. The selection and spatial distribution of auxiliary elements is discussed when the main antenna is a center fed reflector antenna. It is shown that offset feeds of the reflector antenna can be used as auxiliary elements of an adaptive array to suppress weak interfering signals. An experimental system is designed to verify the theoretical analysis. The details of the experimental systems are presented
Grain legume evaluation
Pea variety evaluation, 89NM20, 89EB22, 89KA68, 89N334, 89EB24, 89SC27, 89A24, 89EB33, 89EB25. Grain legume species evaluation, 89NM21, 89MO41, 89N25, 89MC9, 89NM21, 89A22. Faba bean evaluation, 89MO42, 89A23, 89MC10, 89EB27, 89SG22 Grain legume agronom
Remarks on the structure constants of the Verlinde algebra associated to
The structure constants of the Verlinde
algebra as functions of either vanish or can be expressed after a change
of variable as the weight function of an irreducible representation of .
We give a similar formula in the case.Comment: 5 pages, AmsTeX, 1 figure available on reques
Heavy X-ray obscuration in the most-luminous galaxies discovered by WISE
Hot Dust-Obscured Galaxies (Hot DOGs) are hyperluminous
() infrared galaxies with
extremely high (up to hundreds of K) dust temperatures. The sources powering
both their extremely high luminosities and dust temperatures are thought to be
deeply buried and rapidly accreting supermassive black holes (SMBHs). Hot DOGs
could therefore represent a key evolutionary phase in which the SMBH growth
peaks. X-ray observations can be used to study their obscuration levels and
luminosities. In this work, we present the X-ray properties of the 20
most-luminous () known Hot DOGs at
. Five of them are covered by long-exposure ( ks) Chandra and
XMM-Newton observations, with three being X-ray detected, and we study their
individual properties. One of these sources (W01160505) is a Compton-thick
candidate, with column density
derived from X-ray spectral fitting. The remaining 15 Hot DOGs have been
targeted by a Chandra snapshot (3.1 ks) survey. None of these 15 is
individually detected; therefore we applied a stacking analysis to investigate
their average emission. From hardness-ratio analysis, we constrained the
average obscuring column density and intrinsic luminosity to be
log and
, which are consistent with
results for individually detected sources. We also investigated the
and relations, finding hints that Hot
DOGs are typically X-ray weaker than expected, although larger samples of
luminous obscured QSOs are needed to derive solid conclusions.Comment: MNRAS, accepted 2017 November 29 . Received 2017 November 29 ; in
original form 2017 October 11. 15 pages, 6 figure
Revealing the X-ray Variability of AGN with Principal Component Analysis
We analyse a sample of 26 active galactic nuclei with deep XMM-Newton
observations, using principal component analysis (PCA) to find model
independent spectra of the different variable components. In total, we identify
at least 12 qualitatively different patterns of spectral variability, involving
several different mechanisms, including five sources which show evidence of
variable relativistic reflection (MCG-6-30-15, NGC 4051, 1H 0707-495, NGC 3516
and Mrk 766) and three which show evidence of varying partial covering neutral
absorption (NGC 4395, NGC 1365, and NGC 4151). In over half of the sources
studied, the variability is dominated by changes in a power law continuum, both
in terms of changes in flux and power law index, which could be produced by
propagating fluctuations within the corona. Simulations are used to find unique
predictions for different physical models, and we then attempt to qualitatively
match the results from the simulations to the behaviour observed in the real
data. We are able to explain a large proportion of the variability in these
sources using simple models of spectral variability, but more complex models
may be needed for the remainder. We have begun the process of building up a
library of different principal components, so that spectral variability in AGN
can quickly be matched to physical processes. We show that PCA can be an
extremely powerful tool for distinguishing different patterns of variability in
AGN, and that it can be used effectively on the large amounts of high-quality
archival data available from the current generation of X-ray telescopes.Comment: 25 pages, 27 figures, accepted to MNRAS. Analysis code available on
request to lead author. Edit: Rogue table remove
56Ni dredge-up in the type IIp Supernova 1995V
We present contemporary infrared and optical spectra of the plateau type II
SN 1995V in NGC 1087 covering four epochs, approximately 22 to 84 days after
shock breakout. The data show, for the first time, the infrared spectroscopic
evolution during the plateau phase of a typical type II event. In the optical
region P Cygni lines of the Balmer series and of metals lines were identified.
The infrared (IR) spectra were largely dominated by the continuum, but P Cygni
Paschen lines and Brackett gamma lines were also clearly seen. The other
prominent IR features are confined to wavelengths blueward of 11000 \AA and
include Sr II 10327, Fe II 10547, C I 10695 and He I 10830 \AA. We demonstrate
the presence of He I 10830 \AA on days 69 and 85. The presence of this line at
such late times implies re-ionisation. A likely re-ionising mechanism is
gamma-ray deposition following the radioactive decay of 56Ni. We examine this
mechanism by constructing a spectral model for the He I 10830 \AA line based on
explosion model s15s7b2f of Weaver & Woosley (1993). We find that this does not
generate the observed line owing to the confinement of the 56Ni to the central
zones of the ejecta. In order to reproduce the He I line, it was necessary to
introduce additional upward mixing of the 56Ni, with 10^{-5} of the total
nickel mass reaching above the helium photosphere. In addition, we argue that
the He I line-formation region is likely to have been in the form of pure
helium clumps in the hydrogen envelope.Comment: Accepted for publication in MNRAS, 32 pages including 11 figures
(uses psfig.sty - included
Flight investigation of the effects of Apollo heat-shield singularities on ablator performance
Launch vehicle flight tests of effects of Apollo heat shield irregularities on ablative material performanc
- …