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REMARKS ON THE STRUCTURE CONSTANTS OF
THE VERLINDE ALGEBRA ASSOCIATED TO sl3
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The Verlinde fusion algebra is an associative commutative algebra associated to a
Wess-Zumino-Witten model of conformal field theory [V,F,GW,K,S]. Such a model
is labelled by a simple Lie algebra g and a natural number % called level. The Ver-
linde algebra A(g, k) is a finitely generated algebra with generators V) enumerated
by irreducible g-modules admissible for the model. The structure constants NY ,
of the multiplication Vy -V, =3 N X MV,, are non-negative integers important for
applications. ( We use the formula in [K, Sec.13.35] as a definition of the structure
constants.)

Example 1. The algebra A(sls, k) has k+1 generators Vj, ..., V. For fixed A, v and
varying pu, the structure constants N i“;" are either zero or form the characteristic
function of an interval with respect to . Namely, N;\L’Z” =0, if A — v is odd or if
lv| > A. If A—v is even and |v| < A, then Nf\‘;l’ =1lforpe[(A—v)/2,k—(A+v)/2]
and N ;ft” = 0 otherwise.

It is interesting that after an affine change of the variable the function N ft” of
1 becomes the weight function of the irreducible sly-module with highest weight
k— A

In this paper we give a similar formula for the structure constants of the Verlinde
algebra associated to sls.

1. Weight Functions.

Let P = Z3/Z - (1,1,1) be the two dimensional weight lattice of sl3. Let
Ll = (1, O, O), L2 = (O, 1, O), L3 = (O, O, 1), a1 = (1, —1, 0), Qg = (O, 1, —1), a3 =
(—1,0,1), considered as elements of P.

For a natural number k introduce coordinates on P:

yi(p) = (a1, 1),  yo(p) = (az, i),  y3(p) :=Fk+ (as,u) =k —y1 —yo,
where (z,y) = z1y1 + T2y2 + T3Yys3.
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Definition 1. A triangle in P is a set A of the form
A={pePlyi(p) > Ai,i=1,2,3}

for some integers A;.
The number k — A; — Ay — A3 is called the size of the triangle. It is the integral
length of its edges.

Definition 2. A pair consisting of a natural number m and a triangle A of size ¢
is called appropriate if £ > 2m — 2.

Definition 3. The weight function w,, n associated to an appropriate pair m, A
is the following function
Wm,A P — Zxo,

which is zero outside A, and its level sets inside A are shown in the picture. The
level sets of wy, A are defined inductively. The function wy, A is equal to zero at
the corner triangles of A of size m — 2. wy, A is equal to 1 at the boundary integral
points of the remaining part of A. Denote by n the number min{m—1,¢—2m+2}.
Assume that the points of A where w,, o < j for j < n are already defined, define
the set w,, A = j as the set of boundary integral points of the convex hull of
the remaining integral points of A. If the set w,, o = n is already defined, put
W, A =N+ 1 at the remaining part of A.

2. Main Result.

Fix a natural number k. A weight A € P is called admissible at level k if
yi(A) > 0,7 =1,2,3. Denote by V) the irreducible sls-module with highest weight
A. For \,v € P, denote by dy(v) the dimension of the weight subspace of V) of
weight v.

The generators of the Verlinde algebra A(sls, k) are labelled by irreducible si3-
modules V), with admissible highest weights.

Let N;\/,u be the structure constants of A(sl3, k). Here A\, u,v € P, and we set
Ny, =0, if at least one of the indices is not admissible.

For fixed )\, v consider Nf’;” as a function of y € P.

Theorem 1.
1. If dx(v) =0, then N§ " =0.
2. If dx(v) > 0, then there is an appropriate pair m, A such that m = dy(v) and

N)P\LIU = wm,A(u)
for all .

Below we describe the triangle A.
Assume that dy(v) > 0. Set

zia(v) =min{im| —1|m € Z,dx(v + ma;) < dr(v)}
fori=1,2,3.

Definition 4. A point v € P is of type I (resp. 1) if the product
(a1,v) - (ag,v) - (a3, v) is non-positive (resp. non-negative).

For v of type I, let i and j be such that (a;,v) > 0, (oj,v) > 0. For v of type
II, let ¢ and j be such that (a;,v) < 0,(aj,v) < 0. In both cases let ¢ be the
remaining index in {1,2,3}.
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Theorem 2. Assume that dy(v) > 0. Then the triangle A in Theorem 1 has the
following form. If v is of type I, then

A={pePlyip) > zixW), yj(p) > zjx(v), ye(p) > zex(v) — (ae,v)}.

If v is of type 1I, then
A={pePlyi(p) = zia(v) — (i, v), yj(1) = zj2(v) — (o, ), ye(p) > zex ()}

Example 2. Let v = 0. Then d»(0) = 0 unless A\ = (a + 3b)L1 — aLz or A =
aLy — (a + 3b)L3 for some non-negative integers a and b. If A has this form, then
dx(0) = a + 1 and the triangle of Theorem 1 is

A={pePlyi(p) >bi=1,23}

Remark. For an irreducible sis-module V), consider its weight function dy : P —
Z>o. It is easy to see that, after an affine change of variables, the function dy
becomes the weight function of an appropriate pair m, A, c¢f. [FH, Sec. 13]. Namely,
the affine change of variables ry : P — P, {1L1 + laLa — (€1 + l3)ag + laany + A,
transforms dy into the weight function wy, o, where m = (a1,A) +1 and A is a
triangle of size (a1 + 2ag, A).

Conversely, any weight function wy, A after a suitable affine change of variables
becomes the weight function of an irreducible sl3-module.

Remark. It would be interesting to find an analog of these theorems for the si4-
Verlinde algebra.

3. Application.

Consider the Wess-Zumino-Witten model associated to sls at level k. Consider
the space of conformal blocks associated to a torus with one marked point labelled
by an admissible sl3-module V). Denote by D(), k) the dimension of this space.
From the fusion rules [TUY], it follows that D(\, k) = >7  NY .

Corollary. D(\ k) =0 unless A = (a+3b)Ly —aLs or A =aly — (a + 3b)Ls for

some non-negative integers a and b. If X has this form, then

DOK) = Y wa(p)

where m = a+1 and A is described in Example 2. Moreover, D(\ k) is equal to the
dimension of the irreducible sl3-module with highest weight (k — 3b— 2a)L; — aLs.

In particular, if & = 2a + 3b, the smallest level admissible for Vy, then D(\, 2a +
3b) = dim V_,1, = (a+1)(a+2)/2, see in [FH, 15.17] a formula for the dimension.

Remark. Computation of D(A, k) was the starting point of this work.
In the next sections we sketch a proof of Theorems 1 and 2.

4. Formula for the Structure Constants.

Let W/ be the group of affine transformations of the plane P generated by
reflections s1, 2, s3, where s; is the reflection at the line y; = 0 for ¢« = 1,2, and s3
is the reflection at the line y3 = —3.
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Define another action of W” on P by wxA = w(A—a3)+agz. Let e : W — {1, -1}
be the homomorphism taking reflections to —1.
The structure constants of the Verlinde algebra A(sls, k) are given by the formula

1) NEY = S e(w) - da(v+ p—w )

weWN
if A\, u, p + v are admissible at level k. This formula is an easy combination of the
definition of the structure constants in [K,13.35] and formula 12.31 in [FH].

5. Proof of the Theorems.
Formula (1) holds if A, u, p 4+ v are admissible at level k. For fixed A and v, this
means that p belongs to the triangle

Ar={pePlyi(n) = 0,y;(1) = 0,ye(p) = — (v, )},
if v is of type I, and to the triangle

AII = {,u € ,P|y1(,u) > _(O‘ivy)ayj(:u) > —(Oéj,l/),yg(,u) > 0}7

if v is of type II.
We consider all terms of formula (1) as functions of u € Ay, resp. of u € Ayy.
Consider the following 13 elements of W":

S ={id, sa, SpSc, S, SvSesp|a=1,2,3,(b,¢) = (1,2),(1,3),(2,3) }.
Rewrite (1) as

(2) N =€) daw+p—wrp)+ Y e(w)da(v+p—wp),
wesS weWnN—-8

Lemma 1. If A\, u, u + v are admissible, then all terms of the second sum in (2)
are equal to zero.

The lemma is an easy corollary of admissibility.

To prove Theorems 1 and 2 we compute explicitly 13 functions of p of the first
sum in (2).

The function corresponding to w = id is the constant function dy(v).

From now on we assume that v is of type I and describe the remaining 12
functions. Type II is considered similarly.

Lemma 2. The function dx(v + p — s¢ * ) as a function of p € Ay
is equal to dx(v), if ye(p) < zen — (ae,v),
is equal to 0, if ye(u) > zex + dra(v) — (g, v) — 1,
is equal to zg x + dx(v) — (au,v) — ye(p) — 1 otherwise.

For a =1,j, the function dx(v + p — sq * pt) as a function of p € Ag
is equal to dx(v), if Ya < Zar,
is equal t0 0, if yo > zgx +dr(v) — 1,
is equal to zq x + da(V) — ya(p) — 1 otherwise.

Lemma 3. The function dx(v + p — (sis;8;) * ) as a function of p € Ay is equal

to da(v — (yi(k) + y;(1) + 2)a).
The function dy(v + pn — (s;85) * p) as a function of p € Ay is equal to

da(v = (yi(p) + Ve + (y; (1) + Dey).
Similar descriptions hold for the remaining functions of the set S. Combining
these descriptions we get Theorems 1 and 2.
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