REMARKS ON THE STRUCTURE CONSTANTS OF THE VERLINDE ALGEBRA ASSOCIATED TO sl₃

G.Felder and A.Varchenko

February, 1995

The Verlinde fusion algebra is an associative commutative algebra associated to a Wess-Zumino-Witten model of conformal field theory [V,F,GW,K,S]. Such a model is labelled by a simple Lie algebra \mathfrak{g} and a natural number k called level. The Verlinde algebra $A(\mathfrak{g}, k)$ is a finitely generated algebra with generators V_{λ} enumerated by irreducible \mathfrak{g} -modules admissible for the model. The structure constants $N_{\lambda,\mu}^{\nu}$ of the multiplication $V_{\lambda} \cdot V_{\mu} = \sum_{\nu} N_{\lambda,\mu}^{\nu} V_{\nu}$ are non-negative integers important for applications. (We use the formula in [K, Sec.13.35] as a definition of the structure constants.)

Example 1. The algebra $A(sl_2, k)$ has k+1 generators $V_0, ..., V_k$. For fixed λ, ν and varying μ , the structure constants $N_{\lambda,\mu}^{\mu+\nu}$ are either zero or form the characteristic function of an interval with respect to μ . Namely, $N_{\lambda,\mu}^{\mu+\nu} = 0$, if $\lambda - \nu$ is odd or if $|\nu| > \lambda$. If $\lambda - \nu$ is even and $|\nu| < \lambda$, then $N_{\lambda,\mu}^{\mu+\nu} = 1$ for $\mu \in [(\lambda - \nu)/2, k - (\lambda + \nu)/2]$ and $N_{\lambda,\mu}^{\mu+\nu} = 0$ otherwise.

It is interesting that after an affine change of the variable the function $N_{\lambda,\mu}^{\mu+\nu}$ of μ becomes the weight function of the irreducible sl_2 -module with highest weight $k - \lambda$.

In this paper we give a similar formula for the structure constants of the Verlinde algebra associated to sl_3 .

1. Weight Functions.

Let $\mathcal{P} = \mathbb{Z}^3/\mathbb{Z} \cdot (1,1,1)$ be the two dimensional weight lattice of sl_3 . Let $L_1 = (1,0,0), L_2 = (0,1,0), L_3 = (0,0,1), \alpha_1 = (1,-1,0), \alpha_2 = (0,1,-1), \alpha_3 = (-1,0,1)$, considered as elements of \mathcal{P} .

For a natural number k introduce coordinates on \mathcal{P} :

$$y_1(\mu) := (\alpha_1, \mu), \qquad y_2(\mu) := (\alpha_2, \mu), \qquad y_3(\mu) := k + (\alpha_3, \mu) = k - y_1 - y_2,$$

where $(x, y) = x_1y_1 + x_2y_2 + x_3y_3$.

Typeset by \mathcal{AMS} -TEX

Supported in part by NSF grants DMS-9400841 and DMS-9203929 Department of Mathematics, University of North Carolina, Chapel Hill, N.C. 27599, felder@math.unc.edu, varchenko@math.unc.edu.

Definition 1. A triangle in \mathcal{P} is a set Δ of the form

$$\Delta = \{ \mu \in \mathcal{P} \mid y_i(\mu) \ge A_i, i = 1, 2, 3 \}$$

for some integers A_i .

The number $k - A_1 - A_2 - A_3$ is called *the size* of the triangle. It is the integral length of its edges.

Definition 2. A pair consisting of a natural number m and a triangle Δ of size ℓ is called *appropriate* if $\ell \ge 2m - 2$.

Definition 3. The weight function $w_{m,\Delta}$ associated to an appropriate pair m, Δ is the following function

$$v_{m,\Delta}: \mathcal{P} \to \mathbb{Z}_{\geq 0},$$

which is zero outside Δ , and its level sets inside Δ are shown in the picture. The level sets of $w_{m,\Delta}$ are defined inductively. The function $w_{m,\Delta}$ is equal to zero at the corner triangles of Δ of size m-2. $w_{m,\Delta}$ is equal to 1 at the boundary integral points of the remaining part of Δ . Denote by n the number $min\{m-1, \ell-2m+2\}$. Assume that the points of Δ where $w_{m,\Delta} < j$ for j < n are already defined, define the set $w_{m,\Delta} = j$ as the set of boundary integral points of the convex hull of the remaining integral points of Δ . If the set $w_{m,\Delta} = n$ is already defined, put $w_{m,\Delta} = n + 1$ at the remaining part of Δ .

2. Main Result.

Fix a natural number k. A weight $\lambda \in \mathcal{P}$ is called *admissible* at level k if $y_i(\lambda) \geq 0, i = 1, 2, 3$. Denote by V_{λ} the irreducible sl_3 -module with highest weight λ . For $\lambda, \nu \in \mathcal{P}$, denote by $d_{\lambda}(\nu)$ the dimension of the weight subspace of V_{λ} of weight ν .

The generators of the Verlinde algebra $A(sl_3, k)$ are labelled by irreducible sl_3 -modules V_{μ} with admissible highest weights.

Let $N_{\lambda,\mu}^{\nu}$ be the structure constants of $A(sl_3, k)$. Here $\lambda, \mu, \nu \in \mathcal{P}$, and we set $N_{\lambda,\mu}^{\nu} = 0$, if at least one of the indices is not admissible.

For fixed λ, ν consider $N_{\lambda,\mu}^{\mu+\nu}$ as a function of $\mu \in \mathcal{P}$.

Theorem 1.

1. If $d_{\lambda}(\nu) = 0$, then $N_{\lambda,\mu}^{\mu+\nu} = 0$.

2. If $d_{\lambda}(\nu) > 0$, then there is an appropriate pair m, Δ such that $m = d_{\lambda}(\nu)$ and

$$N_{\lambda,\mu}^{\mu+\nu} = w_{m,\Delta}(\mu)$$

for all μ .

Below we describe the triangle Δ . Assume that $d_{\lambda}(\nu) > 0$. Set

$$z_{i,\lambda}(\nu) = \min\{|m| - 1 \mid m \in \mathbb{Z}, d_{\lambda}(\nu + m\alpha_i) < d_{\lambda}(\nu)\}$$

for i = 1, 2, 3.

Definition 4. A point $\nu \in \mathcal{P}$ is of *type I* (resp. *II*) if the product $(\alpha_1, \nu) \cdot (\alpha_2, \nu) \cdot (\alpha_3, \nu)$ is non-positive (resp. non-negative).

For ν of type *I*, let *i* and *j* be such that $(\alpha_i, \nu) \ge 0, (\alpha_j, \nu) \ge 0$. For ν of type *II*, let *i* and *j* be such that $(\alpha_i, \nu) \le 0, (\alpha_j, \nu) \le 0$. In both cases let ℓ be the remaining index in $\{1, 2, 3\}$.

Theorem 2. Assume that $d_{\lambda}(\nu) > 0$. Then the triangle Δ in Theorem 1 has the following form. If ν is of type I, then

$$\Delta = \{ \mu \in \mathcal{P} \mid y_i(\mu) \ge z_{i,\lambda}(\nu), \, y_j(\mu) \ge z_{j,\lambda}(\nu), \, y_\ell(\mu) \ge z_{\ell,\lambda}(\nu) - (\alpha_\ell, \nu) \}.$$

If ν is of type II, then

$$\Delta = \{ \mu \in \mathcal{P} \mid y_i(\mu) \ge z_{i,\lambda}(\nu) - (\alpha_i, \nu), \, y_j(\mu) \ge z_{j,\lambda}(\nu) - (\alpha_j, \nu), \, y_\ell(\mu) \ge z_{\ell,\lambda}(\nu) \}.$$

Example 2. Let $\nu = 0$. Then $d_{\lambda}(0) = 0$ unless $\lambda = (a + 3b)L_1 - aL_3$ or $\lambda = aL_1 - (a + 3b)L_3$ for some non-negative integers a and b. If λ has this form, then $d_{\lambda}(0) = a + 1$ and the triangle of Theorem 1 is

$$\Delta = \{ \mu \in \mathcal{P} \, | \, y_i(\mu) \ge b, i = 1, 2, 3 \}.$$

Remark. For an irreducible sl_3 -module V_{λ} , consider its weight function $d_{\lambda} : \mathcal{P} \to \mathbb{Z}_{\geq 0}$. It is easy to see that, after an affine change of variables, the function d_{λ} becomes the weight function of an appropriate pair m, Δ , cf. [FH, Sec. 13]. Namely, the affine change of variables $r_{\lambda} : \mathcal{P} \to \mathcal{P}, \ell_1 L_1 + \ell_2 L_2 \mapsto (\ell_1 + \ell_2)\alpha_1 + \ell_2 \alpha_2 + \lambda$, transforms d_{λ} into the weight function $w_{m,\Delta}$, where $m = (\alpha_1, \lambda) + 1$ and Δ is a triangle of size $(\alpha_1 + 2\alpha_2, \lambda)$.

Conversely, any weight function $w_{m,\Delta}$ after a suitable affine change of variables becomes the weight function of an irreducible sl_3 -module.

Remark. It would be interesting to find an analog of these theorems for the sl_4 -Verlinde algebra.

3. Application.

Consider the Wess-Zumino-Witten model associated to sl_3 at level k. Consider the space of conformal blocks associated to a torus with one marked point labelled by an admissible sl_3 -module V_{λ} . Denote by $D(\lambda, k)$ the dimension of this space. From the fusion rules [TUY], it follows that $D(\lambda, k) = \sum_{\mu} N^{\mu}_{\lambda,\mu}$.

Corollary. $D(\lambda, k) = 0$ unless $\lambda = (a + 3b)L_1 - aL_3$ or $\lambda = aL_1 - (a + 3b)L_3$ for some non-negative integers a and b. If λ has this form, then

$$D(\lambda,k) = \sum_{\mu} w_{m,\Delta}(\mu)$$

where m = a+1 and Δ is described in Example 2. Moreover, $D(\lambda, k)$ is equal to the dimension of the irreducible s_{l_3} -module with highest weight $(k - 3b - 2a)L_1 - aL_3$.

In particular, if k = 2a + 3b, the smallest level admissible for V_{λ} , then $D(\lambda, 2a + 3b) = \dim V_{-aL_3} = (a+1)(a+2)/2$, see in [FH, 15.17] a formula for the dimension.

Remark. Computation of $D(\lambda, k)$ was the starting point of this work. In the next sections we sketch a proof of Theorems 1 and 2.

4. Formula for the Structure Constants.

Let W^{\wedge} be the group of affine transformations of the plane \mathcal{P} generated by reflections s_1, s_2, s_3 , where s_i is the reflection at the line $y_i = 0$ for i = 1, 2, and s_3 is the reflection at the line $y_3 = -3$.

Define another action of W^{\wedge} on \mathcal{P} by $w * \lambda = w(\lambda - \alpha_3) + \alpha_3$. Let $\epsilon : W^{\wedge} \to \{1, -1\}$ be the homomorphism taking reflections to -1.

The structure constants of the Verlinde algebra $A(sl_3, k)$ are given by the formula

(1)
$$N_{\lambda,\mu}^{\mu+\nu} = \sum_{w \in W^{\wedge}} \epsilon(w) \cdot d_{\lambda}(\nu + \mu - w * \mu)$$

if $\lambda, \mu, \mu + \nu$ are admissible at level k. This formula is an easy combination of the definition of the structure constants in [K,13.35] and formula 12.31 in [FH].

5. Proof of the Theorems.

Formula (1) holds if $\lambda, \mu, \mu + \nu$ are admissible at level k. For fixed λ and ν , this means that μ belongs to the triangle

$$\Delta_{I} = \{ \mu \in \mathcal{P} \, | \, y_{i}(\mu) \ge 0, y_{j}(\mu) \ge 0, y_{\ell}(\mu) \ge -(\alpha_{\ell}, \nu) \},\$$

if ν is of type I, and to the triangle

$$\Delta_{II} = \{\mu \in \mathcal{P} \mid y_i(\mu) \ge -(\alpha_i, \nu), y_j(\mu) \ge -(\alpha_j, \nu), y_\ell(\mu) \ge 0\},\$$

if ν is of type II.

We consider all terms of formula (1) as functions of $\mu \in \Delta_I$, resp. of $\mu \in \Delta_{II}$. Consider the following 13 elements of W^{\wedge} :

$$S = \{ id, s_a, s_b s_c, s_c s_b, s_b s_c s_b \mid a = 1, 2, 3, (b, c) = (1, 2), (1, 3), (2, 3) \}.$$

Rewrite (1) as

(2)
$$N_{\lambda,\mu}^{\mu+\nu} = \sum_{w \in S} \epsilon(w) \cdot d_{\lambda}(\nu+\mu-w*\mu) + \sum_{w \in W^{\wedge}-S} \epsilon(w) \cdot d_{\lambda}(\nu+\mu-w*\mu),$$

Lemma 1. If $\lambda, \mu, \mu + \nu$ are admissible, then all terms of the second sum in (2) are equal to zero.

The lemma is an easy corollary of admissibility.

To prove Theorems 1 and 2 we compute explicitly 13 functions of μ of the first sum in (2).

The function corresponding to w = id is the constant function $d_{\lambda}(\nu)$.

From now on we assume that ν is of type I and describe the remaining 12 functions. Type II is considered similarly.

Lemma 2. The function $d_{\lambda}(\nu + \mu - s_{\ell} * \mu)$ as a function of $\mu \in \Delta_I$ is equal to $d_{\lambda}(\nu)$, if $y_{\ell}(\mu) < z_{\ell,\lambda} - (\alpha_{\ell}, \nu)$, is equal to 0, if $y_{\ell}(\mu) \ge z_{\ell,\lambda} + d_{\lambda}(\nu) - (\alpha_{\ell}, \nu) - 1$, is equal to $z_{\ell,\lambda} + d_{\lambda}(\nu) - (\alpha_{\ell}, \nu) - y_{\ell}(\mu) - 1$ otherwise. For a = i, j, the function $d_{\lambda}(\nu + \mu - s_a * \mu)$ as a function of $\mu \in \Delta_I$

is equal to $d_{\lambda}(\nu)$, if $y_a < z_{a,\lambda}$, is equal to 0, if $y_a \ge z_{a,\lambda} + d_{\lambda}(\nu) - 1$, is equal to $z_{a,\lambda} + d_{\lambda}(\nu) - y_a(\mu) - 1$ otherwise.

Lemma 3. The function $d_{\lambda}(\nu + \mu - (s_i s_j s_i) * \mu)$ as a function of $\mu \in \Delta_I$ is equal to $d_{\lambda}(\nu - (y_i(\mu) + y_j(\mu) + 2)\alpha_{\ell})$.

The function $d_{\lambda}(\nu + \mu - (s_i s_j) * \mu)$ as a function of $\mu \in \Delta_I$ is equal to $d_{\lambda}(\nu - (y_i(\mu) + 1)\alpha_{\ell} + (y_j(\mu) + 1)\alpha_j)$.

Similar descriptions hold for the remaining functions of the set S. Combining these descriptions we get Theorems 1 and 2.

References

 $[{\rm F}]$ G.Faltings, A proof of the Verlinde formula, J. Algebraic Geometry, 3(1994) 347-374.

[FH] W.Fulton and J.Harris, Representation Theory, Springer-Verlag, 1991.

[GW] F.M.Goodman and H.Wenzl, Littlewood-Richardson Coefficients for Hecke Algebras at Roots of Unity, Adv. in Math., 82(1990) 244-265.

[K] V.Kac, Infinite dimensional Lie algebras, Cambridge University Press, Third Edition, 1990.

[V] E.Verlinde, Fusion Rules and Modular Transformations in 2D Conformal Field Theory, Nucl. Phys., B 300 (1988) 360-376.

[S] C.Sorger, La formule de Verlinde, Seminaire Bourbaki, 47eme annee, 1994-95, n. 794, 1-23.