5 research outputs found

    A Deteriorating state of affairs : how endogenous and exogenous factors determine plant decay rates

    No full text
    1. Woody plants store large quantities of carbon (C) and nutrients. As plants senesce and decay, these stores transfer to the soil or other organisms or are released to the atmosphere. 2. Exogenous factors such as topographic position and microclimatic and edaphic conditions tied to locations affect decay rates; however, we know less about how exogenous relative to endogenous factors such as morphological, anatomical and chemical construction tied to plant species affect these rates, especially across different tissue types. 3. We monitored stem, fine branch and leaf decay over 1 year in 'rot plots' distributed across four watersheds in ridge top and valley bottom habitats in a temperate deciduous oak-hickory forest at Tyson Research Center, MO, USA, in the Ozark Highlands for 21 species of woody plants that vary in their constructions. 4. We found poor coordination across tissues in construction and decay, which likely reflects how functional constraints on living tissues influence recalcitrance to decay. Additionally, for all three tissues, species membership and construction were better predictors of decay than was location. Of the construction traits, chemical composition including total fibre, lignin, cellulose, hemicellulose and concentrations of multiple microelements were the best predictors of decay, although the strength of these relationships differed among tissues. 5. Synthesis. We have long known that rates of biogeochemical cycling are influenced by exogenous factors, such as climatic and edaphic factors. Here, we show across plant tissues that endogenous factors, including species identity and tissue construction, can have stronger controls on rates of decay within our study system than do exogenous factors. However, it is likely that the relative strengths of these different controls change through time and among tissues. We predict that anatomical and morphological controls may be more important at early stages and exogenous factors may be more important at later stages of decay.11 page(s

    Data from: A deteriorating state of affairs: how endogenous and exogenous factors determine plant decay rates

    No full text
    Woody plants store large quantities of carbon (C) and nutrients. As plants senesce and decay, these stores transfer to the soil or other organisms or are released to the atmosphere. Exogenous factors such as topographic position and microclimatic and edaphic conditions tied to locations affect decay rates; however, we know less about how exogenous relative to endogenous factors such as morphological, anatomical and chemical construction tied to plant species affect these rates, especially across different tissue types. We monitored stem, fine branch and leaf decay over 1 year in ‘rot plots’ distributed across four watersheds in ridge top and valley bottom habitats in a temperate deciduous oak-hickory forest at Tyson Research Center, MO, USA, in the Ozark Highlands for 21 species of woody plants that vary in their constructions. We found poor coordination across tissues in construction and decay, which likely reflects how functional constraints on living tissues influence recalcitrance to decay. Additionally, for all three tissues, species membership and construction were better predictors of decay than was location. Of the construction traits, chemical composition including total fibre, lignin, cellulose, hemicellulose and concentrations of multiple microelements were the best predictors of decay, although the strength of these relationships differed among tissues. Synthesis. We have long known that rates of biogeochemical cycling are influenced by exogenous factors, such as climatic and edaphic factors. Here, we show across plant tissues that endogenous factors, including species identity and tissue construction, can have stronger controls on rates of decay within our study system than do exogenous factors. However, it is likely that the relative strengths of these different controls change through time and among tissues. We predict that anatomical and morphological controls may be more important at early stages and exogenous factors may be more important at later stages of decay

    Direct estimates of downslope deadwood movement over 30 years in a temperature forest illustrate impacts of treefall on forest ecosystem dynamics

    No full text
    Deadwood plays important roles in forest ecosystems by storing carbon, influencing hydrology, and provisioning countless organisms. Models for these processes often assume that deadwood does not move and ignore redistribution that occurs when trees fall. To evaluate the effects of treefall, we provide the first direct estimates for the magnitude, direction, and drivers of deadwood movement in a long-term oak–hickory forest dynamics plot in Missouri, USA. Among 1871 total pieces of deadwood, logs today pointed downslope more often than branches and occurred at lower elevation than snags. Of these, 477 logs retained tags from which we reconstructed movement using new formulae for reconciling survey coordinates and calculating log shape. Relocated logs occurred at lower elevation than their original rooting location, with the magnitude of the drop dependent on log size, degree of decay, and slope. Although changes in elevation were modest, the log centroids moved up to several meters horizontally. Consequently, as large trees fall, they predictably redistribute deadwood downhill, suggesting that models of deadwood dynamics in small inventory plots may gain accuracy by incorporating import and export along with recruitment and decay. We highlight implications of small-scale deadwood movement for forest inventories, carbon dynamics, and biodiversity.11 page(s

    Dissecting the Effects of Diameter on Wood Decay Emphasizes the Importance of Cross-Stem Conductivity in Fraxinus americana

    No full text
    Pest outbreaks are driving tree dieback and major influxes of deadwood into forest ecosystems. Understanding how pulses of deadwood impact the climate system requires understanding which factors influence greenhouse gas production during wood decay. Recent analyses identify stem diameter as an important control, but report effects that vary in magnitude and direction. This complexity may reflect interacting effects of soil contact, geometry and variable tissue properties. To dissect these effects, we implemented a three-way factorial experiment in Fraxinus americana, (white ash), an iconic North American species threatened by an invasive beetle. Soil contact accelerated decay rates by an order of magnitude with an effect that varied with stem diameter, not bark presence. After experimentally controlling surface area-to-volume ratio, half-buried wide stems decayed more slowly than half-buried narrow stems but more quickly than the aggregate decay rate of buried and suspended stems. These results closely matched variation in moisture content within and among samples, suggesting that limited vertical conduction of soil moisture through deadwood mediates the effect of stem diameter on wood decay. Soil contact also influenced greenhouse gas concentrations reinforcing recent evidence that deadwood acts as a source for CO2 and CH4 while acting as a sink for N2O. Our results suggest that managing tree species affected by pest outbreaks, including F. americana, for biomass salvage and greenhouse gas mitigation requires understanding traits that mediate wood permeability and diffusivity to soil moisture and greenhouse gases
    corecore