191 research outputs found

    Neutrino Oscillations for Dummies

    Full text link
    The reality of neutrino oscillations has not really sunk in yet. The phenomenon presents us with purely quantum mechanical effects over macroscopic time and distance scales (milliseconds and 1000s of km). In order to help with the pedagogical difficulties this poses, I attempt here to present the physics in words and pictures rather than math. No disrespect is implied by the title; I am merely borrowing a term used by a popular series of self-help books

    Measuring the Cosmic Ray Muon-Induced Fast Neutron Spectrum by (n,p) Isotope Production Reactions in Underground Detectors

    Full text link
    While cosmic ray muons themselves are relatively easy to veto in underground detectors, their interactions with nuclei create more insidious backgrounds via: (i) the decays of long-lived isotopes produced by muon-induced spallation reactions inside the detector, (ii) spallation reactions initiated by fast muon-induced neutrons entering from outside the detector, and (iii) nuclear recoils initiated by fast muon-induced neutrons entering from outside the detector. These backgrounds, which are difficult to veto or shield against, are very important for solar, reactor, dark matter, and other underground experiments, especially as increased sensitivity is pursued. We used fluka to calculate the production rates and spectra of all prominent secondaries produced by cosmic ray muons, in particular focusing on secondary neutrons, due to their importance. Since the neutron spectrum is steeply falling, the total neutron production rate is sensitive just to the relatively soft neutrons, and not to the fast-neutron component. We show that the neutron spectrum in the range between 10 and 100 MeV can instead be probed by the (n, p)-induced isotope production rates 12C(n, p)12B and 16O(n, p)16N in oil- and water-based detectors. The result for 12B is in good agreement with the recent KamLAND measurement. Besides testing the calculation of muon secondaries, these results are also of practical importance, since 12B (T1/2 = 20.2 ms, Q = 13.4 MeV) and 16N (T1/2 = 7.13 s, Q = 10.4 MeV) are among the dominant spallation backgrounds in these detectors

    Muon-Induced Background Study for Underground Laboratories

    Full text link
    We provide a comprehensive study of the cosmic-ray muon flux and induced activity as a function of overburden along with a convenient parameterization of the salient fluxes and differential distributions for a suite of underground laboratories ranging in depth from \sim1 to 8 km.w.e.. Particular attention is given to the muon-induced fast neutron activity for the underground sites and we develop a Depth-Sensitivity-Relation to characterize the effect of such background in experiments searching for WIMP dark matter and neutrinoless double beta decay.Comment: 18 pages, 28 figure

    Cosmogenic 11C production and sensitivity of organic scintillator detectors to pep and CNO neutrinos

    Full text link
    Several possible background sources determine the detectability of pep and CNO solar neutrinos in organic liquid scintillator detectors. Among such sources, the cosmogenic 11C nuclide plays a central role. 11C is produced underground in reactions induced by the residual cosmic muon flux. Experimental data available for the effective cross section for 11C by muons indicate that 11C will be the dominant source of background for the observation of pep and CNO neutrinos. 11C decays are expected to total a rate 2.5 (20) times higher than the combined rate of pep and CNO neutrinos in Borexino (KamLAND) in the energy window preferred for the pep measurement, between 0.8 and 1.3 MeV. This study examines the production mechanism of 11C by muon-induced showers in organic liquid scintillators with a novel approach: for the first time, we perform a detailed ab initio calculation of the production of a cosmogenic nuclide, 11C, taking into consideration all relevant production channels. Results of the calculation are compared with the effective cross sections measured by target experiments in muon beams. This paper also discusses a technique for reduction of background from 11C in organic liquid scintillator detectors, which allows to identify on a one-by-one basis and remove from the data set a large fraction of 11C decays. The background reduction technique hinges on an idea proposed by Martin Deutsch, who suggested that a neutron must be ejected in every interaction producing a 11C nuclide from 12C. 11C events are tagged by a three-fold coincidence with the parent muon track and the subsequent neutron capture on protons.Comment: 11 pages, 6 figures; added one section detailing comparison with previous estimates; added reference

    Tritium Beta Decay, Neutrino Mass Matrices and Interactions Beyond the Standard Model

    Get PDF
    The interference of charge-changing interactions, weaker than the V-A Standard Model (SM) interaction and having a different Lorentz structure, with that SM interaction, can, in principle, produce effects near the end point of the Tritium beta decay spectrum which are of a different character from those produced by the purely kinematic effect of neutrino mass expected in the simplest extension of the SM. We show that the existence of more than one mass eigenstate can lead to interference effects at the end point that are stronger than those occurring over the entire spectrum. We discuss these effects both for the special case of Dirac neutrinos and the more general case of Majorana neutrinos and show that, for the present precision of the experiments, one formula should suffice to express the interference effects in all cases. Implications for "sterile" neutrinos are noted.Comment: 32 pages, LaTeX, 6 figures, PostScript; full discussion and changes in notation from Phys. Lett. B440 (1998) 89, nucl-th/9807057; submitted to Phys. Rev.

    Probing the neutrino mass hierarchy and the 13-mixing with supernovae

    Get PDF
    We consider in details the effects of the 13-mixing (sin^2 theta_{13}) and of the type of mass hierarchy/ordering (sign[ Delta m^2_{13}]) on neutrino signals from the gravitational collapses of stars. The observables (characteristics of the energy spectra of nu_e and antinu_e events) sensitive to sin^2 theta_{13} and sign[Delta m^2_{13}] have been calculated. They include the ratio of average energies of the spectra, r_E = /, the ratio of widths of the energy distributions, r_Gamma, the ratios of total numbers of nu_e and antinu_e events at low energies, S, and in the high energy tails, R_{tail}. We construct and analyze scatter plots which show the predictions for the observables for different intervals of sin^2 theta_{13} and signs of Delta m^2_{13}, taking into account uncertainties in the original neutrino spectra, the star density profile, etc.. Regions in the space of observables r_E, r_Gamma, S, R_{tail} exist in which certain mass hierarchy and intervals of sin^2 theta_{13} can be identified or discriminated. We elaborate on the method of the high energy tails in the spectra of events. The conditions are formulated for which sin^2 theta_{13} can be (i) measured, (ii) restricted from below, (iii) restricted from above. We comment on the possibility to determine sin^2 theta_{13} using the time dependence of the signals due to the propagation of the shock wave through the resonance layers of the star. We show that the appearance of the delayed Earth matter effect in one of the channels (nu_e or antinu_e) in combination with the undelayed effect in the other channel will allow to identify the shock wave appeareance and determine the mass hierarchy.Comment: LaTeX, 56 pages, 12 figures; a few clarifications added; typos corrected. Version to appear in JCA

    The Interface Region Imaging Spectrograph (IRIS)

    Get PDF
    The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s temporal resolution and 1 km/s velocity resolution over a field-of-view of up to 175 arcsec x 175 arcsec. IRIS was launched into a Sun-synchronous orbit on 27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains spectra in passbands from 1332-1358, 1389-1407 and 2783-2834 Angstrom including bright spectral lines formed in the chromosphere (Mg II h 2803 Angstrom and Mg II k 2796 Angstrom) and transition region (C II 1334/1335 Angstrom and Si IV 1394/1403 Angstrom). Slit-jaw images in four different passbands (C II 1330, Si IV 1400, Mg II k 2796 and Mg II wing 2830 Angstrom) can be taken simultaneously with spectral rasters that sample regions up to 130 arcsec x 175 arcsec at a variety of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to emission from plasma at temperatures between 5000 K and 10 MK and will advance our understanding of the flow of mass and energy through an interface region, formed by the chromosphere and transition region, between the photosphere and corona. This highly structured and dynamic region not only acts as the conduit of all mass and energy feeding into the corona and solar wind, it also requires an order of magnitude more energy to heat than the corona and solar wind combined. The IRIS investigation includes a strong numerical modeling component based on advanced radiative-MHD codes to facilitate interpretation of observations of this complex region. Approximately eight Gbytes of data (after compression) are acquired by IRIS each day and made available for unrestricted use within a few days of the observation.Comment: 53 pages, 15 figure

    Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity

    Get PDF
    The Sudbury Neutrino Observatory (SNO) has precisely determined the total active (nu_x) 8B solar neutrino flux without assumptions about the energy dependence of the nu_e survival probability. The measurements were made with dissolved NaCl in the heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27 (stat) +/- 0.38 (syst) x10^6 cm^{-2}s^{-1}, in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Delta m^{2} = 7.1^{+1.2}_{-0.6}x10^{-5} ev^2 and theta = 32.5^{+2.4}_{-2.3} degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.Comment: Submitted to Phys. Rev. Let

    Electron Antineutrino Search at the Sudbury Neutrino Observatory

    Get PDF
    Upper limits on the \nuebar flux at the Sudbury Neutrino Observatory have been set based on the \nuebar charged-current reaction on deuterium. The reaction produces a positron and two neutrons in coincidence. This distinctive signature allows a search with very low background for \nuebar's from the Sun and other potential sources. Both differential and integral limits on the \nuebar flux have been placed in the energy range from 4 -- 14.8 MeV. For an energy-independent \nu_e --> \nuebar conversion mechanism, the integral limit on the flux of solar \nuebar's in the energy range from 4 -- 14.8 MeV is found to be \Phi_\nuebar <= 3.4 x 10^4 cm^{-2} s^{-1} (90% C.L.), which corresponds to 0.81% of the standard solar model 8B \nu_e flux of 5.05 x 10^6 cm^{-2} s^{-1}, and is consistent with the more sensitive limit from KamLAND in the 8.3 -- 14.8 MeV range of 3.7 x 10^2 cm^{-2} s^{-1} (90% C.L.). In the energy range from 4 -- 8 MeV, a search for \nuebar's is conducted using coincidences in which only the two neutrons are detected. Assuming a \nuebar spectrum for the neutron induced fission of naturally occurring elements, a flux limit of Phi_\nuebar <= 2.0 x 10^6 cm^{-2} s^{-1}(90% C.L.) is obtained.Comment: submitted to Phys. Rev.
    corecore