2,004 research outputs found

    Quantum dynamics of the avian compass

    Full text link
    The ability of migratory birds to orient relative to the Earth's magnetic field is believed to involve a coherent superposition of two spin states of a radical electron pair. However, the mechanism by which this coherence can be maintained in the face of strong interactions with the cellular environment has remained unclear. This Letter addresses the problem of decoherence between two electron spins due to hyperfine interaction with a bath of spin 1/2 nuclei. Dynamics of the radical pair density matrix are derived and shown to yield a simple mechanism for sensing magnetic field orientation. Rates of dephasing and decoherence are calculated ab initio and found to yield millisecond coherence times, consistent with behavioral experiments

    The magnetic properties of 177^{\rm 177}Hf and 180^{\rm 180}Hf in the strong coupling deformed model

    Get PDF
    This paper reports NMR measurements of the magnetic dipole moments of two high-K isomers, the 37/2−^-, 51.4 m, 2740 keV state in 177^{\rm 177}Hf and the 8−^-, 5.5 h, 1142 keV state in 180^{\rm 180}Hf by the method of on-line nuclear orientation. Also included are results on the angular distributions of gamma transitions in the decay of the 177^{\rm 177}Hf isotope. These yield high precision E2/M1 multipole mixing ratios for transitions in bands built on the 23/2+^+, 1.1 s, isomer at 1315 keV and on the 9/2+^+, 0.663 ns, isomer at 321 keV. The new results are discussed in the light of the recently reported finding of systematic dependence of the behavior of the gR_{\rm R} parameter upon the quasi-proton and quasi-neutron make up of high-K isomeric states in this region.Comment: 9 pages, 9 figures, accepted for publication in Physical Review

    Oscillations in Quantum Entanglement During Rescattering

    Full text link
    We study the time evolution of quantum entanglement between an electron and its parent ion during the rescattering due to a strong few-cycle laser pulse. Based on a simple one-dimensional model, we compute the Neumann entropy during the process for several values of the carrier-envelope phase. The local maxima of the oscillations in the Neumann entropy coincide with the zero crossings of the electric field of the laser pulse. We employ the Wigner function to qualitatively explain the quantum dynamics of rescattering in the phase space.Comment: 2 page

    Impossible protest: noborders in Calais

    Get PDF
    Since the closure of the Red Cross refugee reception centre in Sangatte, undocumented migrants in Calais hoping to cross the border to Britain have been forced to take refuge in a number of squatted migrant camps, locally known by all as ‘the jungles.’ Unauthorised shanty-like residences built by the migrants themselves, living conditions in the camps are very poor. In June 2009, European ‘noborder’ activists set up a week-long protest camp in the area with the intention of confronting the authorities over their treatment of undocumented migrants. In this article, we analyse the June 2009 noborder camp as an instance of ‘immigrant protest.’ Drawing on ethnographic materials and Jacques Rancière's work on politics and aesthetics, we construct a typology of forms of border control through which to analyse the different ways in which the politics of the noborder camp were staged, performed and policed. Developing a critique of policing practices which threatened to make immigrant protest ‘impossible’, we highlight moments of protest which, through the affirmation of an ‘axiomatic’ equality, disrupted and disarticulated the borders between citizens and non-citizens, the political and non-political

    Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa

    Get PDF
    OBJECTIVE: The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. METHOD: Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, the authors performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression was used to calculate genome-wide common variant heritability (single-nucleotide polymorphism [SNP]-based heritability [h2SNP]), partitioned heritability, and genetic correlations (rg) between anorexia nervosa and 159 other phenotypes. RESULTS: Results were obtained for 10,641,224 SNPs and insertion-deletion variants with minor allele frequencies >1% and imputation quality scores >0.6. The h2SNP of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. The authors identified one genome-wide significant locus on chromosome 12 (rs4622308) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high-density lipoprotein cholesterol, and significant negative genetic correlations were observed between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. CONCLUSIONS: Anorexia nervosa is a complex heritable phenotype for which this study has uncovered the first genome-wide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. The study results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology

    Shapes of leading tunnelling trajectories for single-electron molecular ionization

    Full text link
    Based on the geometrical approach to tunnelling by P.D. Hislop and I.M. Sigal [Memoir. AMS 78, No. 399 (1989)], we introduce the concept of a leading tunnelling trajectory. It is then proven that leading tunnelling trajectories for single-active-electron models of molecular tunnelling ionization (i.e., theories where a molecular potential is modelled by a single-electron multi-centre potential) are linear in the case of short range interactions and "almost" linear in the case of long range interactions. The results are presented on both the formal and physically intuitive levels. Physical implications of the obtained results are discussed.Comment: 14 pages, 5 figure

    System size and centrality dependence of charged hadron transverse momentum spectra in Au+Au and Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV

    Full text link
    We present transverse momentum distributions of charged hadrons produced in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. The spectra are measured for transverse momenta of 0.25 < p_T < 5.0 GeV/c at sqrt(s) = 62.4 GeV and 0.25 < p_T < 7.0 GeV/c at sqrt(s) = 200 GeV, in a pseudo-rapidity range of 0.2 < eta < 1.4. The nuclear modification factor R_AA is calculated relative to p+p data at both collision energies as a function of collision centrality. At a given collision energy and fractional cross-section, R_AA is observed to be systematically larger in Cu+Cu collisions compared to Au+Au. However, for the same number of participating nucleons, R_AA is essentially the same in both systems over the measured range of p_T, in spite of the significantly different geometries of the Cu+Cu and Au+Au systems.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    System Size, Energy and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy Ion Collisions

    Full text link
    We present the first measurements of the pseudorapidity distribution of primary charged particles in Cu+Cu collisions as a function of collision centrality and energy, \sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of pseudorapidity, using the PHOBOS detector. Making a global comparison of Cu+Cu and Au+Au results, we find that the total number of produced charged particles and the rough shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants. More detailed studies reveal that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of pseudorapidity occurs for the same Npart/2A value rather than the same Npart value. In other words, it is the collision geometry rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence at RHIC energies.Comment: Submitted to Physical Review Letter
    • …
    corecore