8,120 research outputs found
Quantum dynamics of the avian compass
The ability of migratory birds to orient relative to the Earth's magnetic
field is believed to involve a coherent superposition of two spin states of a
radical electron pair. However, the mechanism by which this coherence can be
maintained in the face of strong interactions with the cellular environment has
remained unclear. This Letter addresses the problem of decoherence between two
electron spins due to hyperfine interaction with a bath of spin 1/2 nuclei.
Dynamics of the radical pair density matrix are derived and shown to yield a
simple mechanism for sensing magnetic field orientation. Rates of dephasing and
decoherence are calculated ab initio and found to yield millisecond coherence
times, consistent with behavioral experiments
Research on the application of satellite remote sensing to local, state, regional, and national programs involved with resource management and environmental quality
Project summaries and project reports are presented in the area of satellite remote sensing as applied to local, regional, and national environmental programs. Projects reports include: (1) Douglas County applications program; (2) vegetation damage and heavy metal concentration in new lead belt; (3) evaluating reclamation of strip-mined land; (4) remote sensing applied to land use planning at Clinton Reservoir; and (5) detailed land use mapping in Kansas City, Kansas
Sulfur loss from subducted altered oceanic crust and implications for mantle oxidation
© The Author(s), [year]. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Walters, J. B., Cruz-Uribe, A. M., & Marschall, H. R. Sulfur loss from subducted altered oceanic crust and implications for mantle oxidation. Geochemical Perspectives Letters, 13, (2020): 36-41, doi:10.7185/geochemlet.2011.Oxygen fugacity (fO2) is a controlling factor of the physics of Earthâs mantle; however, the mechanisms driving spatial and secular changes in fO2 associated with convergent margins are highly debated. We present new thermodynamic models and petrographic observations to predict that oxidised sulfur species are produced during the subduction of altered oceanic crust. Sulfur loss from the subducting slab is a function of the protolith Fe3+/ÎŁFe ratio and subduction zone thermal structure, with elevated sulfur fluxes predicted for oxidised slabs in cold subduction zones. We also predict bi-modal release of sulfur-bearing fluids, with a low volume shallow flux of reduced sulfur followed by an enhanced deep flux of sulfate and sulfite species, consistent with oxidised arc magmas and associated copper porphyry deposits. The variable SOx release predicted by our models both across and among active margins may introduce fO2 heterogeneity to the upper mantle.We thank James Connolly for modelling support and Peter van Keken for providing updated PâT paths for the Syracuse et al. (2010) models. The manuscript benefited from the editorial handling by Helen Williams and from constructive reviews of Maryjo Brounce, Katy Evans, and an anonymous reviewer. JBW acknowledges Fulbright and Chase Distinguished Research fellowships. This work was supported by NSF grant EAR1725301 awarded to AMC
Neutron spin-echo study of the critical dynamics of spin-5/2 antiferromagnets in two and three dimensions
We report a neutron spin-echo study of the critical dynamics in the
antiferromagnets MnF and RbMnF with three-dimensional (3D) and
two-dimensional (2D) spin systems, respectively, in zero external field. Both
compounds are Heisenberg antiferromagnets with a small uniaxial anisotropy
resulting from dipolar spin-spin interactions, which leads to a crossover in
the critical dynamics close to the N\'eel temperature, . By taking
advantage of the energy resolution of the spin-echo
spectrometer, we have determined the dynamical critical exponents for both
longitudinal and transverse fluctuations. In MnF, both the characteristic
temperature for crossover from 3D Heisenberg to 3D Ising behavior and the
exponents in both regimes are consistent with predictions from the
dynamical scaling theory. The amplitude ratio of longitudinal and transverse
fluctuations also agrees with predictions. In RbMnF, the critical
dynamics crosses over from the expected 2D Heisenberg behavior for
to a scaling regime with exponent , which has not been predicted
by theory and may indicate the influence of long-range dipolar interactions
Extended Timed Up and Go assessment as a clinical indicator of cognitive state in Parkinson\u27s disease
Objective: To evaluate a modified extended Timed Up and Go (extended-TUG) assessment against a panel of validated clinical assessments, as an indicator of Parkinsonâs disease (PD) severity and cognitive impairment.
Methods: Eighty-seven participants with idiopathic PD were sequentially recruited from a Movement Disorders Clinic. An extended-TUG assessment was employed which required participants to stand from a seated position, walk in a straight line for 7 metres, turn 180 degrees and then return to the start, in a seated position. The extended-TUG assessment duration was correlated to a panel of clinical assessments, including the Unified Parkinsonâs Disease Rating Scale (MDS-UPDRS), Quality of Life (PDQ-39), Scales for Outcomes in Parkinsonâs disease (SCOPA-Cog), revised Addenbrookeâs Cognitive Index (ACE-R) and Barrattâs Impulsivity Scale 11 (BIS-11).
Results: Extended-TUG time was significantly correlated to MDS-UPDRS III score and to SCOPA-Cog, ACE-R (p\u3c0.001) and PDQ-39 scores (p\u3c0.01). Generalized linear models determined the extended-TUG to be a sole variable in predicting ACE-R or SCOPA-Cog scores. Patients in the fastest extended-TUG tertile were predicted to perform 8.3 and 13.4 points better in the SCOPA-Cog and ACE-R assessments, respectively, than the slowest group. Patients who exceeded the dementia cut-off scores with these instruments exhibited significantly longer extended-TUG times.
Conclusions: Extended-TUG performance appears to be a useful indicator of cognition as well as motor function and quality of life in PD, and warrants further evaluation as a first line assessment tool to monitor disease severity and response to treatment. Poor extended-TUG performance may identify patients without overt cognitive impairment form whom cognitive assessment is needed
On three topical aspects of the N=28 isotonic chain
The evolution of single-particle orbits along the N=28 isotonic chain is
studied within the framework of a relativistic mean-field approximation. We
focus on three topical aspects of the N=28 chain: (a) the emergence of a new
magic number at Z=14; (b) the possible erosion of the N=28 shell; and (c) the
weakening of the spin-orbit splitting among low-j neutron orbits. The present
model supports the emergence of a robust Z=14 subshell gap in 48Ca, that
persists as one reaches the neutron-rich isotone 42Si. Yet the proton removal
from 48Ca results in a significant erosion of the N=28 shell in 42Si. Finally,
the removal of s1/2 protons from 48Ca causes a ~50% reduction of the spin-orbit
splitting among neutron p-orbitals in 42Si.Comment: 12 pages with 5 color figure
Towards an ecological network for the Carpathians
The Carpathian Biodiversity Information System (CBIS) and the proposal for an ecological network for the eastern part of the Carpathians are the two main outcomes of the project funded by the BBI Matra program of the Dutch government. This brochure presents information on how the CBIS was designed, and how the data stored can be retrieved and used. It also clarifies how the CBIS data were used to design the ecological network and, last but not least, it offers recommendations for the use of the proposed ecological network in supporting sustainable developmentin the Carpathians. Due to funding restrictions, the project focused on three east Carpathian countries: Romania, Serbia and Ukraine, which together host the largest area of the Carpathians (Fig. 2). Geographically, the Eastern Carpathians also include parts of the Carpathians located in Poland and Slovakia. Data collection in the Western Carpathians (Czech Republic, Poland, Slovakia and Hungary) will be completed by 2010 and is funded by a parallel project
Isotopic compositions of sulfides in exhumed high-pressure terranes: Implications for sulfur cycling in subduction zones
Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 20(7), (2019): 3347-3374, doi:10.1029/2019GC008374.Subduction is a key component of Earth's longâterm sulfur cycle; however, the mechanisms that drive sulfur from subducting slabs remain elusive. Isotopes are a sensitive indicator of the speciation of sulfur in fluids, sulfide dissolutionâprecipitation reactions, and inferring fluid sources. To investigate these processes, we report ÎŽ34S values determined by secondary ion mass spectroscopy in sulfides from a global suite of exhumed highâpressure rocks. Sulfides are classified into two petrogenetic groups: (1) metamorphic, which represent closedâsystem (re)crystallization from protolithâinherited sulfur, and (2) metasomatic, which formed during open system processes, such as an influx of oxidized sulfur. The ÎŽ34S values for metamorphic sulfides tend to reflect their precursor compositions: â4.3 â° to +13.5 â° for metabasic rocks, and â32.4 â° to â11.0 â° for metasediments. Metasomatic sulfides exhibit a range of ÎŽ34S from â21.7 â° to +13.9 â°. We suggest that sluggish sulfur selfâdiffusion prevents isotopic fractionation during sulfide breakdown and that slab fluids inherit the isotopic composition of their source. We estimate a composition of â11 â° to +8 â° for slab fluids, a significantly smaller range than observed for metasomatic sulfides. Large fractionations during metasomatic sulfide precipitation from sulfateâbearing fluids, and an evolving fluid composition during reactive transport may account for the entire ~36 â° range of metasomatic sulfide compositions. Thus, we suggest that sulfates are likely the dominant sulfur species in slabâderived fluids.All isotopic data and analysis locations are detailed in the supporting information accompanying this article. The authors would like to thank B. Monteleone and M. Yates for assistance with SIMS and EPMA analyses, respectively. J. Selverstone is thanked for providing samples and D. Whitney for providing additional field context. The authors would also like to thank J. Alt, C. LaFlamme, and an anonymous reviewer for their thoughtful and thorough reviews, as well as careful editorial handling by J. BlichertâToft. This project was funded by National Science Foundation Grant EAR 1725301 awarded to A. M. C. and a Geological Society of America grant to J. B. W.2019-12-1
Finite type approximations of Gibbs measures on sofic subshifts
Consider a H\"older continuous potential defined on the full shift
A^\nn, where is a finite alphabet. Let X\subset A^\nn be a specified
sofic subshift. It is well-known that there is a unique Gibbs measure
on associated to . Besides, there is a natural nested
sequence of subshifts of finite type converging to the sofic subshift
. To this sequence we can associate a sequence of Gibbs measures
. In this paper, we prove that these measures weakly converge
at exponential speed to (in the classical distance metrizing weak
topology). We also establish a strong mixing property (ensuring weak
Bernoullicity) of . Finally, we prove that the measure-theoretic
entropy of converges to the one of exponentially fast.
We indicate how to extend our results to more general subshifts and potentials.
We stress that we use basic algebraic tools (contractive properties of iterated
matrices) and symbolic dynamics.Comment: 18 pages, no figure
- âŠ