192 research outputs found

    Targeted Drug Delivery by Gemtuzumab Ozogamicin: Mechanism-Based Mathematical Model for Treatment Strategy Improvement and Therapy Individualization

    Get PDF
    Gemtuzumab ozogamicin (GO) is a chemotherapy-conjugated anti-CD33 monoclonal antibody effective in some patients with acute myeloid leukemia (AML). The optimal treatment schedule and optimal timing of GO administration relative to other agents remains unknown. Conventional pharmacokinetic analysis has been of limited insight for the schedule optimization. We developed a mechanism-based mathematical model and employed it to analyze the time-course of free and GO-bound CD33 molecules on the lekemic blasts in individual AML patients treated with GO. We calculated expected intravascular drug exposure (I-AUC) as a surrogate marker for the response to the drug. A high CD33 production rate and low drug efflux were the most important determinants of high I-AUC, characterizing patients with favorable pharmacokinetic profile and, hence, improved response. I-AUC was insensitive to other studied parameters within biologically relevant ranges, including internalization rate and dissociation constant. Our computations suggested that even moderate blast burden reduction prior to drug administration enables lowering of GO doses without significantly compromising intracellular drug exposure. These findings indicate that GO may optimally be used after cyto-reductive chemotherapy, rather than before, or concomitantly with it, and that GO efficacy can be maintained by dose reduction to 6 mg/m2 and a dosing interval of 7 days. Model predictions are validated by comparison with the results of EORTC-GIMEMA AML19 clinical trial, where two different GO schedules were administered. We suggest that incorporation of our results in clinical practice can serve identification of the subpopulation of elderly patients who can benefit most of the GO treatment and enable return of the currently suspended drug to clinic

    Anti-thymocyte globulin with CsA and MMF as GVHD prophylaxis in nonmyeloablative HLA-mismatched allogeneic HCT

    Get PDF
    Nonmyeloablative regimens are used for allogeneic hematopoietic cell transplantation (HCT) of older or medically unfit patients, but successful outcome is still hindered by graft-versus-host disease (GVHD), especially in the setting of HLA-mismatched HCT. New GVHD prophylaxis strategies are emerging, including the triple drug strategy, that improve the GVHD-free and relapse-free survival (GRFS). Because the impact of ATG in HLA-mismatched Flu-TBI-based nonmyeloablative HCT has not been investigated, we did a retrospective analysis in three Dutch centers. 67 patients were evaluable, with a median age of 56 years. Overall survival, relapse-free survival and GRFS at 4 years were 52%, 43%, and 38%, respectively. NRM findings and cumulative incidence of relapse at 4 years were 26% and 31%, respectively. At 1-year grade II-IV had occurred in 40% of the patients, and the incidence of moderate-severe chronic GVHD incidence was 16%. Acknowledging the limitations of retrospective analyses, we conclude that the use of ATG for HLA-mismatched truly nonmyeloablative Flu-TBI HCT is feasible and results in acceptable long term outcomes, especially with regards to GRFS. We consider ATG in combination with cyclosporin and mycophenolate mofetil as an alternative for the triple drug strategy that uses sirolimus for GVHD prophylaxis in this particular setting

    A difficult to treat Leishmania infantum relapse after allogeneic stem cell transplantation

    Get PDF
    Amphotericin B; Leishmania; PancytopeniaAmfotericina B; Leishmania; PancitopèniaAnfotericina B; Leishmania; PancitopeniaHere we describe a complicated case of a relapsed Leishmania infantum infection after an allogeneic stem cell transplantation (allo-SCT) for primary myelofibrosis. Three years earlier the patient had been diagnosed with a hemophagocytic lymphohistiocytosis secondary to a visceral Leishmania infantum infection, for which he was effectively treated with a cumulative dose of 40 mg/kg liposomal amphotericin B. During the first disease episode he was also diagnosed with primary myelofibrosis for which he received medical follow-up. One year later ruxolitinib was started due to progressive disease. No Leishmania relapse occurred. Nevertheless, the marrow fibrosis progressed, and an allo-SCT was performed. Two months after allo-SCT prolonged fever and a persistent pancytopenia occurred, which was due to a relapse of visceral Leishmaniasis. The infection was refractory to a prolonged treatment with liposomal amphotericin B with a cumulative dose up to 100 mg/kg. Salvage treatment with miltefosine led to reduction of fever within a few days and was followed by a slow recovery of pancytopenia over the following months. The Leishmania parasite load by PCR started to decline and after 3.5 months no Leishmania DNA could be detected anymore and follow-up until ten months afterwards did not show a relapse

    Pretransplantation MRD in Older Patients With AML After Treatment With Decitabine or Conventional Chemotherapy

    Get PDF
    The predictive value of measurable residual disease (MRD) for survival in acute myeloid leukemia (AML) has been firmly established in younger patients treated with intensive chemotherapy. The value of MRD after treatment with decitabine in older patients is unknown. This retrospective analysis included patients ≥60 years of age with AML who received an allogeneic hematopoietic cell transplantation (alloHCT) after treatment with decitabine or intensive chemotherapy. Of the 133 consecutively transplanted patients, 109 had available pretransplantation MRD analyses (by flowcytometry [threshold 0.1%]). Forty patients received decitabine treatment (10-day schedule), and 69 patients received intensive chemotherapy (7 + 3 regimen). Patients who received decitabine were older (median 67 versus 64 years) and more often had MRD (70% versus 38%). OS after alloHCT was comparable in both groups. In the chemotherapy group, MRD-positive patients had a significantly higher relapse probability (subdistribution hazard ratio [sHR] 4.81; P= .0031) and risk of death (HR 2.8; P= .02) compared to MRD-negative patients. In the decitabine group there was no significant association between the presence of MRD and relapse (sHR 0.85; P= .83) or death (HR 0.72; P= .60). Pretransplantation MRD in patients receiving decitabine treatment does not have similar predictive value for relapse or survival in older AML patients receiving an alloHCT, compared to patients receiving intensive chemotherapy

    Myofilament dysfunction in cardiac disease from mice to men

    Get PDF
    In healthy human myocardium a tight balance exists between receptor-mediated kinases and phosphatases coordinating phosphorylation of regulatory proteins involved in cardiomyocyte contractility. During heart failure, when neurohumoral stimulation increases to compensate for reduced cardiac pump function, this balance is perturbed. The imbalance between kinases and phosphatases upon chronic neurohumoral stimulation is detrimental and initiates cardiac remodelling, and phosphorylation changes of regulatory proteins, which impair cardiomyocyte function. The main signalling pathway involved in enhanced cardiomyocyte contractility during increased cardiac load is the β-adrenergic signalling route, which becomes desensitized upon chronic stimulation. At the myofilament level, activation of protein kinase A (PKA), the down-stream kinase of the β-adrenergic receptors (β-AR), phosphorylates troponin I, myosin binding protein C and titin, which all exert differential effects on myofilament function. As a consequence of β-AR down-regulation and desensitization, phosphorylation of the PKA-target proteins within the cardiomyocyte may be decreased and alter myofilament function. Here we discuss involvement of altered PKA-mediated myofilament protein phosphorylation in different animal and human studies, and discuss the roles of troponin I, myosin binding protein C and titin in regulating myofilament dysfunction in cardiac disease. Data from the different animal and human studies emphasize the importance of careful biopsy procurement, and the need to investigate localization of kinases and phosphatases within the cardiomyocyte, in particular their co-localization with cardiac myofilaments upon receptor stimulation.</p

    Whole body composition analysis by the BodPod air-displacement plethysmography method in children with phenylketonuria shows a higher body fat percentage

    Get PDF
    BACKGROUND: Phenylketonuria (PKU) causes irreversible central nervous system damage unless a phenylalanine (PHE) restricted diet with amino acid supplementation is maintained. To prevent growth retardation, a protein/amino acid intake beyond the recommended dietary protein allowance is mandatory. However, data regarding disease and/or diet related changes in body composition are inconclusive and retarded growth and/or adiposity is still reported. The BodPod whole body air-displacement plethysmography method is a fast, safe and accurate technique to measure body composition. AIM: To gain more insight into the body composition of children with PKU. METHODS: Patients diagnosed with PKU born between 1991 and 2001 were included. Patients were identified by neonatal screening and treated in our centre. Body composition was measured using the BodPod system (Life Measurement Incorporation©). Blood PHE values determined every 1–3 months in the year preceding BodPod analysis were collected. Patients were matched for gender and age with data of healthy control subjects. Independent samples t tests, Mann–Whitney and linear regression were used for statistical analysis. RESULTS: The mean body fat percentage in patients with PKU (n = 20) was significantly higher compared to healthy controls (n = 20) (25.2% vs 18.4%; p = 0.002), especially in girls above 11 years of age (30.1% vs 21.5%; p = 0.027). Body fat percentage increased with rising body weight in patients with PKU only (R = 0.693, p = 0.001), but did not correlate with mean blood PHE level (R = 0.079, p = 0.740). CONCLUSION: Our data show a higher body fat percentage in patients with PKU, especially in girls above 11 years of age

    Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening

    Get PDF
    Aims More than 50% of patients with heart failure have preserved ejection fraction characterized by diastolic dysfunction. The prevalance of diastolic dysfunction is higher in females and associates with multiple comorbidities such as hypertension (HT), obesity, hypercholesterolemia (HC), and diabetes mellitus (DM). Although its pathophysiology remains incompletely understood, it has been proposed that these comorbidities induce systemic inflammation, coronary microvascular dysfunction, and oxidative stress, leading to myocardial fibrosis, myocyte stiffening and, ultimately, diastolic dysfunction. Here, we tested this hypothesis in a swine model chronically exposed to three common comorbidities. Methods and results DM (induced by streptozotocin), HC (produced by high fat diet), and HT (resulting from renal artery embolization), were produced in 10 female swine, which were followed for 6 months. Eight female healthy swine on normal pig-chow served as controls. The DM + HC + HT group showed hyperglycemia, HC, hypertriglyceridemia, renal dysfunction and HT, which were associated with systemic inflammation. Myocardial superoxide production was markedly increased, due to increased NOX activity and eNOS uncoupling, and associated with reduced NO production, and impaired coronary small artery endothelium-dependent vasodilation. These abnormalities were accompanied by increased myocardial collagen content, reduced capillary/fiber ratio, and elevated passive cardiomyocyte stiffness, resulting in an increased left ventricular end-diastolic stiffness (measured by pressure-volume catheter) and a trend towards a reduced E/A ratio (measured by cardiac MRI), while ejection fraction was maintained. Conclusions The combination of three common comorbidities leads to systemic inflammation, myocardial oxidative stress, and coronary microvascular dysfunction, which associate with myocardial stiffening and LV diastolic dysfunction with preserved ejection fraction

    Intestinal Damage Determines the Inflammatory Response and Early Complications in Patients Receiving Conditioning for a Stem Cell Transplantation

    Get PDF
    Contains fulltext : 87954.pdf (publisher's version ) (Open Access)BACKGROUND: Stem cell transplantation (SCT) is still complicated by the occurrence of fever and inflammatory complications attributed to neutropenia and subsequent infectious complications. The role of mucosal barrier injury (MBI) of the intestinal tract therein has received little attention. METHODS: We performed a retrospective analysis in 163 SCT recipients of which data had been collected prospectively on intestinal damage (citrulline), inflammation (C-reactive protein), and neutrophil count. Six different conditioning regimens were studied; 5 myeloablative (MA) and 1 non-myeloablative (NMA). Linear mixed model multivariate and AUC analyses were used to define the role of intestinal damage in post-SCT inflammation. We also studied the relationship between the degree of intestinal damage and the occurrence of early post-SCT complications. RESULTS: In the 5 MA regimen there was a striking pattern of inflammatory response that coincided with the occurrence of severe intestinal damage. This contrasted with a modest inflammatory response seen in the NMA regimen in which intestinal damage was limited. With linear mixed model analysis the degree of intestinal damage was shown the most important determinant of the inflammatory response, and both neutropenia and bacteremia had only a minor impact. AUC analysis revealed a strong correlation between citrulline and CRP (Pearson correlation r = 0.96). Intestinal damage was associated with the occurrence of bacteremia and acute lung injury, and influenced the kinetics of acute graft-versus-host disease. CONCLUSION: The degree of intestinal damage after myeloablative conditioning appeared to be the most important determined the inflammatory response following SCT, and was associated with inflammatory complications. Studies should explore ways to ameliorate cytotoxic therapy-induced intestinal damage in order to reduce complications associated with myeloablative conditioning therapy
    • …
    corecore