312 research outputs found

    The ability to get everywhere: dispersal modes of free-living, aquatic nematodes

    Get PDF
    Ptatscheck C, Traunspurger W. The ability to get everywhere: dispersal modes of free-living, aquatic nematodes. Hydrobiologia. 2020;847:3519-3547.Nematodes colonize almost all aquatic habitats worldwide. Despite their small size, restricted locomotion and lack of pelagic larvae, they can reach even isolated habitats within a short time. In this review, we examine the underlying dispersal modes, considering their active movement in substrates and water, their drift by water and wind, rafting, zoochory as well as human-mediated vectors. These modes are limited by morphology and habitat structure, ecological factors and especially by hydrodynamics. Active dispersal is effective over short distances, but with increasing water-flow velocity, passive dispersal modes, which enable long-range transfer, become important. In fact, the transport of nematodes over thousands of kilometers via ship water tanks and by hitchhiking on sea turtles has been documented. Overland dispersal vectors include wind and birds whereas rafting enables an aggregated distribution because food is available, and reproduction is possible onboard the rafts. The diversity of possible dispersal modes is high and offers a reasonably chance for gravid females or groups of nematodes to be transferred even to remote environments. Their immigration is continuous, and supported by their rapid, parthenogenetic reproduction, nematodes are effective pioneers with the ability to (re)colonize new or disturbed habitats or rebalance already existing communities

    Should we redefine meiofaunal organisms? The impact of mesh size on collection of meiofauna with special regard to nematodes

    Get PDF
    Ptatscheck C, Gehner S, Traunspurger W. Should we redefine meiofaunal organisms? The impact of mesh size on collection of meiofauna with special regard to nematodes. Aquatic Ecology. 2020;54:1135–1143.Meiofaunal organisms are the predominant metazoans in benthic systems and important members of the benthic food web. They are defined by mesh size and specifically by their retention on a sieve with a 44-”m mesh size. In this study, we examined the accuracy of this standard collection method by counting the number of meiobenthic individuals, life stages and nematode species in a sample. A filter cascade consisting of five different mesh sizes (41 ”m, 30 ”m, 20 ”m, 10 ”m and 1 ”m) was used to fractionate a natural freshwater meiobenthic collection, and the individuals in each fraction were then counted. In line with the current definition of meiofauna, all tardigrades, microcrustaceans, chironomids and oligochaetes were retained by the largest mesh size, whereas 9% of the rotifers were first retained on the 30-”m meshes. For nematodes, 23% were not retained on the 41-”m meshes and individuals were collected even from the 1-”m fraction. With declining mesh size, the yield of retained nematodes increased, the age structure shifted to juveniles, evenness declined, and the species composition changed. As all of these findings were significant, this study therefore shows that the current definition of meiofauna is not sufficient to encompass the entire spectrum of meiofauna present in a sample and may result in misleading assessments of the diversity and composition of these organisms. We therefore propose that, especially for nematodes, a definition based on a smaller mesh size (at least 20 ”m) is more appropriate

    The early catfish catches the worm: predation of Corydoras aeneus (Siluriformes, Callichthyidae) on freshwater nematodes

    Get PDF
    Majdi N, Weber S, Traunspurger W. The early catfish catches the worm: predation of Corydoras aeneus (Siluriformes, Callichthyidae) on freshwater nematodes. ANNALES DE LIMNOLOGIE-INTERNATIONAL JOURNAL OF LIMNOLOGY. 2018;54: UNSP 29.In this study, we measured the daily consumption of four different nematode species by a small freshwater catfish species, Corydoras aeneus (Gill, 1858). Consumption of nematodes by fishes was significant with a single C. aeneus individual being able to consume in 24 h between 40 581 and 75 849 adult nematodes depending on the nematode species offered. This represented the ingestion of up to 238 mg wet weight when considering the largest nematode species: Panagrellus redivivus. Our results strengthen the growing evidence of a significant trophic channel existing between meiobenthic invertebrates like nematodes and small bottom-feeding fishes like C. aeneus. We also discuss the relevance of using P redivivus as live food for rearing C. aeneus which is a popular ornamental fish

    Life cycle and population growth rate of Caenorhabditis elegans studied by a new method

    Get PDF
    Muschiol D, Schroeder F, Traunspurger W. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method. BMC Ecology. 2009;9(1):14.Background: The free-living nematode Caenorhabditis elegans is the predominant model organism in biological research, being used by a huge number of laboratories worldwide. Many researchers have evaluated life-history traits of C. elegans in investigations covering quite different aspects such as ecotoxicology, inbreeding depression and heterosis, dietary restriction/supplement, mutations, and ageing. Such traits include juvenile growth rates, age at sexual maturity, adult body size, age-specific fecundity/mortality, total reproduction, mean and maximum lifespan, and intrinsic population growth rates. However, we found that in life-cycle experiments care is needed regarding protocol design. Here, we test a recently developed method that overcomes some problems associated with traditional cultivation techniques. In this fast and yet precise approach, single individuals are maintained within hanging drops of semi-fluid culture medium, allowing the simultaneous investigation of various life-history traits at any desired degree of accuracy. Here, the life cycles of wild-type C. elegans strains N2 (Bristol, UK) and MY6 (MĂŒnster, Germany) were compared at 20°C with 5 × 10 9 Escherichia coli ml -1 as food source. Results: High-resolution life tables and fecundity schedules of the two strains are presented. Though isolated 700 km and 60 years apart from each other, the two strains barely differed in life-cycle parameters. For strain N2 (n = 69), the intrinsic rate of natural increase (rmd-1), calculated according to the Lotka equation, was 1.375, the net reproductive rate (R 0) 291, the mean generation time (T) 90 h, and the minimum generation time (T min) 73.0 h. The corresponding values for strain MY6 (n = 72) were r m = 1.460, R 0 = 289, T = 84 h, and T min = 67.3 h. Peak egg-laying rates in both strains exceeded 140 eggs d -1. Juvenile and early adulthood mortality was negligible. Strain N2 lived, on average, for 16.7 d, while strain MY6 died 2 days earlier; however, differences in survivorship curves were statistically non-significant. Conclusion: We found no evidence that adaptation to the laboratory altered the life history traits of C. elegans strain N2. Our results, discussed in the light of earlier studies on C. elegans, demonstrate certain advantages of the hanging drop method in investigations of nematode life cycles. Assuming that its reproducibility is validated in further studies, the method will reduce the inter-laboratory variability of life-history estimates and may ultimately prove to be more convenient than the current standard methods used by C. elegans researchers

    Comparison of morphological, DNA barcoding, and metabarcoding characterizations of freshwater nematode communities

    Get PDF
    Schenk J, Kleinbölting N, Traunspurger W. Comparison of morphological, DNA barcoding, and metabarcoding characterizations of freshwater nematode communities. Ecology and Evolution. 2020;10(6): ece3.6104.Biomonitoring approaches and investigations of many ecological questions require assessments of the biodiversity of a given habitat. Small organisms, ranging from protozoans to metazoans, are of great ecological importance and comprise a major share of the planet's biodiversity but they are extremely difficult to identify, due to their minute body sizes and indistinct structures. Thus, most biodiversity studies that include small organisms draw on several methods for species delimitation, ranging from traditional microscopy to molecular techniques. In this study, we compared the efficiency of these methods by analyzing a community of nematodes. Specifically, we evaluated the performances of traditional morphological identification, single-specimen barcoding (Sanger sequencing), and metabarcoding in the identification of 1500 nematodes from sediment samples. The molecular approaches were based on the analysis of the 28S ribosomal large and 18S small subunits (LSU and SSU). The morphological analysis resulted in the determination of 22 nematode species. Barcoding identified a comparable number of operational taxonomic units (OTUs) based on 28S rDNA (n = 20) and fewer OTUs based on 18S rDNA (n = 12). Metabarcoding identified a higher OTU number but fewer amplicon sequence variants (AVSs) (n = 48 OTUs, n = 17 ASVs for 28S rDNA, and n = 31 OTUs, n = 6 ASVs for 18S rDNA). Between the three approaches (morphology, barcoding, and metabarcoding), only three species (13.6%) were shared. This lack of taxonomic resolution hinders reliable community identifications to the species level. Further database curation will ensure the effective use of molecular species identification

    Meiofauna in stream habitats: temporal dynamics of abundance, biomass and secondary production in different substrate microhabitats in a first-order stream

    Get PDF
    BrĂŒchner-HĂŒttemann H, Ptatscheck C, Traunspurger W. Meiofauna in stream habitats: temporal dynamics of abundance, biomass and secondary production in different substrate microhabitats in a first-order stream. Aquatic Ecology. 2020;54:1079-1095.Meiofaunal abundance, biomass and secondary production were investigated over 13 months in an unpolluted first-order stream. Four microhabitats were considered: sediment and the biofilms on dead wood, macrophytes and leaf litter. The relative contribution of the microhabitats to secondary production and the influence of environmental factors on meiofaunal density distribution were estimated. We expected (1) meiofaunal abundance and biomass to exhibit seasonal patterns, with more pronounced seasonal fluctuations on macrophytes and leaf litter than in the other microhabitats, (2) annual secondary production to be highest in sediment; however, the relative contribution of the microhabitats to monthly secondary production would change during the year, and (3) a bottom-up driven influence on meiofaunal density distribution in the microhabitats. Meiofaunal annual mean abundance, biomass and secondary production were 7–14 times higher in sediment and on dead wood than on macrophytes and leaf litter. Significant seasonal patterns described the meiofaunal abundance in sediment and on leaf litter as well as the biomass in sediment, on macrophytes and leaf litter. Organisms in sediment and on dead wood contributed 48 and 43%, respectively, to secondary production m−2, but in regard to the stream area covered by the microhabitats, sediment had the highest share (80%). Significant determinants of the density distribution were AFDM, protozoans, bacteria and Chl-a, which influenced all meiofaunal groups. Our study clearly indicates that meiofaunal organisms in sediment and on dead wood have a remarkable share on total secondary production of lotic systems which is especially relevant for forested low-order streams

    Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth

    Get PDF
    Schenk J, Geisen S, Kleinbölting N, Traunspurger W. Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth. Metabarcoding and Metagenomics. 2019;3: e46704.Microscopic organisms are the dominant and most diverse organisms on Earth. Nematodes, as part of this microscopic diversity, are by far the most abundant animals and their diversity is equally high. Molecular metabarcoding is often applied to study the diversity of microorganisms, but has yet to become the standard to determine nematode communities. As such, the information metabarcoding provides, such as in terms of species coverage, taxonomic resolution and especially if sequence reads can be linked to the abundance or biomass of nematodes in a sample, has yet to be determined. Here, we applied metabarcoding using three primer sets located within ribosomal rRNA gene regions to target assembled mock-communities consisting of 18 different nematode species that we established in 9 different compositions. We determined abundances and biomass of all species added to examine if relative sequence abundance or biomass can be linked to relative sequence reads. We found that nematode communities are not equally represented by the three different primer sets and we found that relative read abundances almost perfectly correlated positively with relative species biomass for two of the primer sets. This strong biomass-read number correlation suggests that metabarcoding reads can reveal biomass information even amongst more complex nematode communities as present in the environment and possibly can be transferred to better study other groups of organisms. This biomass-read link is of particular importance for more reliably assessing nutrient flow through food-webs, as well as adjusting biogeochemical models through user-friendly and easily obtainable metabarcoding data.</jats:p

    Environmental factors and river network position allow prediction of benthic community assemblies: A model of nematode metacommunities

    Get PDF
    Gansfort B, Traunspurger W. Environmental factors and river network position allow prediction of benthic community assemblies: A model of nematode metacommunities. Scientific Reports. 2019;9(1): 14716.The field of metacommunity studies is growing rapidly, including recent applications to river networks. Most of these studies have targeted a single river network but whether their findings are relevant to other river systems is unknown. This study investigated the influence of environmental, spatial and temporal parameters on the community structure of nematodes in the river networks of the Elbe and Rhine. We asked whether the variance in community structure was better explained by spatial variables representing the watercourse than by overland distances. After determining the patterns in the Elbe river network, we tested whether they also explained the Rhine data. The Elbe data were evaluated using a boosted regression tree analysis. The predictive ability of the model was then assessed using the Rhine data. In addition to strong temporal dynamics, environmental factors were more important than spatial factors in structuring riverine nematode communities. Community structure was more strongly influenced by watercourse than by Euclidean distances. Application of the model’s predictions to the Rhine data correlated significantly with field observations. Our model shows that the consequences of changes in environmental factors or habitat connectivity for aquatic communities across different river networks are quantifiable

    Nematodes down under: State of knowledge and future trends

    Get PDF
    Nematodes inhabit most environments that address their need of water, carbon, and energy. They also play an important role in epigean food webs by occupying different trophic levels, while providing essential ecosystem services such as regulating decomposition and nutrient mineralization. Conversely, little is known about the role that nematodes play in subterranean ecosystems. For this reason, an in-depth review was undertaken in order to concatenate data from existing literature and provide a baseline for future studies. A total of 41 surveyed scientific works, published over a time period of 138 years, reported 295 unique taxa from 78 different cave systems. Although an increase in scientific outputs was recorded from the late 1990s, there is a considerable lack of information on cave-dwelling nematodes from Asia, South America, and North America. Also, only seven true cave-dwelling (troglobitic) species have been discovered, which may indicate a lack of comprehensive taxonomic efforts. From an ecological perspective, very few works have reported on the importance of nematode assemblages associated with cave ecosystems. This has resulted in the causal factors leading to population resilience processes, as well as trophic interactions, remaining mostly speculative. Nonetheless, the isolated cave-dwelling nematode assemblage associated with Movile Cave, including the true cave-dwelling species Chronogaster troglodytes, fulfills an important role by feeding on microbial mats and in turn serving as a food source for predators. This example of a cave nematode assemblage providing ecosystem services has inspired the undertaking of the Gcwihaba Caves Research Project, which aims at studying artificially opened caves in Ngamiland, Botswana. Compared to other caves in the area with natural openings, the artificially opened systems present different food source pathways, atmospheric conditions, and community assemblage structures. This provides a unique opportunity to study isolated cave communities, including nematode assemblages, as well as their ecological importance

    The extent of wind-mediated dispersal of small metazoans, focusing nematodes

    Get PDF
    Ptatscheck C, Gansfort B, Traunspurger W. The extent of wind-mediated dispersal of small metazoans, focusing nematodes. Scientific Reports. 2018;8(1): 6814.Wind-mediated transport is an important mechanism in the dispersal of small metazoans. Yet, concrete dispersal rates have hardly been examined. Here we present the results of an one-year field experiment investigating the composition and dispersal rates of aeroplankton. To gain insights into the dynamics of dispersal at the species level, we focused on nematodes, worldwide the most common metazoan taxon. Among the six taxa collected in this study (nematodes, rotifers, collembolans, tardigrades, mites, and thrips), nematodes had the highest dispersal rates (up to >3000 individuals m−2 in 4 weeks, 27 species identified) and represented >44% of aeroplankton. Only living nematodes, and no propagules, were dispersed. All taxa had a higher dispersal potential in environments linked to the source habitat, evidenced by the much higher deposition of organisms in funnels placed on the ground than on the rooftop of a ten-story building. Nematodes under conditions of high humidity and wind speed had the highest dispersal rates, while increasing temperatures and dryness had a significantly positive impact on the wind drift of mites and thrips. The results indicated that wind dispersal over long distances is possible. The notable organismal input by wind dispersal may contribute to biodiversity and ecosystem functions
    • 

    corecore