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environmental factors and 
river network position allow 
prediction of benthic community 
assemblies: A model of nematode 
metacommunities
Birgit Gansfort   & Walter traunspurger

The field of metacommunity studies is growing rapidly, including recent applications to river networks. 
Most of these studies have targeted a single river network but whether their findings are relevant to 
other river systems is unknown. This study investigated the influence of environmental, spatial and 
temporal parameters on the community structure of nematodes in the river networks of the elbe and 
Rhine. We asked whether the variance in community structure was better explained by spatial variables 
representing the watercourse than by overland distances. After determining the patterns in the Elbe 
river network, we tested whether they also explained the Rhine data. The Elbe data were evaluated 
using a boosted regression tree analysis. The predictive ability of the model was then assessed using the 
Rhine data. In addition to strong temporal dynamics, environmental factors were more important than 
spatial factors in structuring riverine nematode communities. Community structure was more strongly 
influenced by watercourse than by Euclidean distances. Application of the model’s predictions to the 
Rhine data correlated significantly with field observations. Our model shows that the consequences of 
changes in environmental factors or habitat connectivity for aquatic communities across different river 
networks are quantifiable.

Given that habitat fragmentation and environmental change are progressive, a theoretical framework is needed 
that allows prediction of the consequences for ecological communities. Expanding studies beyond a local spatial 
scale to a regional view can shed light on how local community dynamics are affected by the regional species 
pool1. Over the last decade, this metacommunity concept has become a powerful tool for determining the rel-
ative importance of spatial (i.e. regional, dispersal-related) and environmental (local, niche-based) processes in 
structuring communities2. If dispersal rates are not a limiting factor at the spatial scale of investigation, then 
species will track along environmental gradients, with their respective populations structured according to their 
preferred environmental conditions (i.e., species sorting)1. If dispersal is limited, such that species cannot reach 
potentially suitable habitats (dispersal limitation), or if the rate of dispersal is very high, such that communities 
become homogenized as member species are distributed into neighboring habitats irrespective of their suitability 
(i.e. mass effects), then community assembly will be related to spatial factors2.

The degree of site connectivity along a dendritically structured river network strongly influences metacom-
munity structure3. However, quantifying the amount of connectivity between sites remains challenging3, as the 
dispersal rates within different ecosystems and for entire species assemblages are not easily formulated4. An alter-
native approach is to use spatial variables as proxies for dispersal intensity, as shorter physical distances between 
sites imply stronger connectivity between communities via dispersal.

The choice of a distance measurement as the spatial variable depends on the dispersal mode of the stud-
ied organism5. Although the Euclidean distance, defined as the straight line between two sites, is often used6, 
it reflects only the dispersal routes of an organism over land and is not appropriate for the dispersal of aquatic 
organisms along a watercourse, which instead requires measurement of the distances between sites along that 
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body of water. The importance of these two dispersal proxies for community assemblies widely varied according 
to the studied organismal group, thus showing that different taxa respond differently to isolation effects in stream 
networks7.

In addition to differences arising for reasons of biology and landscape setting, some of the discrepant results in 
those studies may have been due to choices made by the researchers in analyzing the data3. For example, whereas 
presence/absence (p/a) data were used by Heino et al.8,9, abundance data were analyzed in the studies of Landeiro 
et al.10. However, different processes might drive the presence vs. abundance of species, requiring that both be 
taken into account11.

Interestingly, studies investigating the same organismal group and using similar analytical techniques have 
reached different conclusions concerning the impact of spatial and environmental variable groups (e.g. for mac-
roinvertebrates9,12 or for fishes7,9). Therefore, the question arises whether general drivers of aquatic communities 
can be identified and whether they are applicable to different river systems. Alternatively, there may be very 
specific mechanisms that occur in each river system (hereinafter called river network identity) such that general 
predictions are impossible. Distinguishing between these two possibilities requires the application of a model 
that allows predictions of community similarities across river networks. This type of model should also allow a 
simultaneous determination of the drivers of aquatic communities and a quantification of the consequences of 
changes in both the environment and connectivity for the species assemblies in a particular river habitat. The two 
river systems investigated in this study were those of the Elbe and Rhine, which are among the ten longest rivers 
in Europe. The river systems are not connected by a waterway, but the courses of both of the respective rivers 
traverse Germany from south to north, such that the climatic conditions and the species pools occurring in their 
habitats are similar.

Metacommunities of river networks have been studied frequently with regard to a wide range of organismal 
groups, from bacteria to fishes. By contrast, within the broadly diverse and highly abundant meiobenthos, only 
ostracods have been studied in this context13,14. Since, among aquatic animals, the meiobenthos are of intermedi-
ate size (most are 1–2 mm long) and mobility (benthic, passive dispersers), they are useful in studies of the role of 
dispersal capacity in metacommunity processes.

Among meiobenthic freshwater taxa, nematodes are the most abundant and diverse15. As such, they are an 
essential trophic link between unicellular (e.g., bacteria) and larger organisms (e.g., macroinvertebrates and 
fishes)16,17. Moreover, while nematodes can move actively over short distances (mm–cm), their long-distance dis-
tribution depends on passive dispersal. Thus, along a watercourse they can be drifted within the body of water18 
whereas overland dispersal depends on vectors such as wind, rain, or other animals19,20.

As ostracods are so far the only meiobenthic organisms in streams to have been studied within the metacom-
munity context, we base our expectations on the results of those two studies13,14. Both showed that spatial and 
environmental variables were related to the ostracod metacommunity whereby spatial factors, especially water-
course distances, dominated. Therefore, we suggest that nematode communities will be primarily structured by 
spatial factors, with environmental factors playing a significant but still secondary role.

In this study, we investigated (1) the relative influence of spatial vs. environmental factors in structuring the 
nematode metacommunity in the riverine network of the Elbe river with respect to pure species assemblages 
(p/a data) and community abundance compositions. Specifically, we asked whether the variance in community 
structure was better explained by spatial variables derived from the watercourse than by overland distances. We 
hypothesized that (H1.1) nematode communities are primarily structured by spatial factors and that (H1.2), 
among the spatial factors, distances along the watercourse are a more important determinant of community sim-
ilarities than are overland distances. (2) We then examined the extent to which the patterns observed in the Elbe 
river network could be transferred to distinct river systems, by testing the overlap between predictions based on a 
model developed using the Elbe data and real observations from the Rhine river network. We hypothesized (H2) 
that a model based on environmental, spatial and temporal dynamics would be able to predict the community 
similarities of nematodes in a distinct but geographically proximate river system.

Material and Methods
Sampling sites. Between 2000 and 2013, the Federal Institute of Hydrology (BfG) collected 115 samples 
within the Elbe and 59 samples within the Rhine river systems. The 115 Elbe samples were obtained from 47 
sampling sites (Fig. 1 left), with 25 sites sampled only once and 22 repeatedly (2–10 samples). The 59 Rhine sam-
ples were obtained from 42 sampling sites (Fig. 1, right), with only 2 sampling sites sampled repeatedly (7 and 12 
samples). The sampling sites of Elbe river system were located in 10 rivers, with 39 samples taken from tributaries 
and 76 along the Elbe itself. In the Rhine river system, samples were taken from 7 rivers, with 24 from tributaries 
and 35 from along the Rhine itself.

Sample processing. Samples for nematode analysis were collected and processed as described in earlier 
studies21,22, specifically nematode extraction was conducted by density gradient centrifugation in colloidal silica 
(LUDOX)23. Three subsamples from the uppermost 2–3 cm of sediment were collected and pooled. From each of 
these pooled samples the first 150 nematodes (if present) were identified to the species level (Leica Dialux micros-
copy observations, 1250× magnification), mainly according to the criteria of Andrássy24–26 and Loof27,28. In total, 
12,370 individuals were identified in the Elbe samples and 8,520 in the Rhine samples. The physico-chemical 
parameters of the sediment were determined in additional grab samples (top layer 0–10 cm) obtained from the 
same sites as the nematode samples, with at least 10 subsamples combined to overcome the effects of local varia-
bility (for details, see Heininger et al.21). All sampling was conducted using the same sampling protocol.

Sampling and the subsequent analysis of sediment properties and contamination (heavy metals and organic 
chemicals) were carried out according to Heininger et al.21. The measured sediment characteristics included (for 
summary see Table 1, raw data are given as Supplementary Information Table S1): grain size distribution (four 
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categories: F1 > 2000, F2 60–2000, F3 20–60, and F4 < 20 µm), total organic carbon (TOC) and the elements 
N and S (Elbe: 15 missing values each; Rhine: 10 missing values each); Al, Ca, Fe, Li, Mg, Mn, and P (Elbe: 42 
missing values each; Rhine: 23 missing Al values, 30 missing Li values, all other elements: 28 missing values). The 
following contaminants were analyzed in the sediments: metals [Cd, Cr, Cu, Hg (Elbe: 2 missing values), Ni, Pb, 
and Zn]; As; seven PCBs [PCB 28 (one missing value), 52, 101, 118, 138, 153, 180]; 16 PAHs (according to the 
priority pollutant list of the US-Environmental Protection Agency(EPA): acenaphthene, acenaphthylene; anthra-
cene; benz[a]anthracene; benzo[a]pyrene; benzo[b]fluoranthene; benzo[g,h,i]perylene; benzo[k]fluoranthene; 
chrysene; dibenz[a,h]anthracene; fluoranthene; fluorene; indeno[1,2,3-cd]pyrene; naphthalene (3 missing val-
ues); phenanthrene; pyrene]; DDTs (pp′-DDT, pp′-DDD, pp′-DDE; HCB); and mineral oils. The missing values 
were those not available from the different authorities responsible for measuring the chemical parameters during 
the long sampling period. However, our method of analysis was able to adequately handle missing values29. In 
addition, there were relatively few missing values, with the exception of some of the Rhine samples (Fe, Li, Mg, 
Mn, P). While missing values could have led to an underestimation of model performance for the Rhine data, 
it was not expected to influence either model building or assessments of the influence of predictors within the 
model.

Variable selection. Spatial variables. The location (latitude, longitude, altitude) of the sampling sites was 
documented by the BfG during sampling and the shortest distance from each sampling site to the river source 
along the river (river km) was measured. The two categories of spatial variables used in the analysis consisted of: 
geographical position (Euclidean distance, corrected for the Earth’s curvature) and dendritic position (water-
course distance). The geographical position was characterized using the first two vectors from a principal coor-
dinates analysis (PCoA) of the distance matrix generated by determining the geodesic distance between all sites 
(calculated using the R package geosphere29). These two vectors constituted >99.9% of the eigenvalues for the 
distance matrix (for the Elbe and Rhine sampling sites, respectively).

For the dendritic position of the sites, a second distance matrix measuring the distances of each sampling site 
to all other sampling sites along the watercourse was created. A PCoA was performed for this dendritic distance 
matrix as well and the first two vectors used as variables for the dendritic position of the sites. The two vectors 
constituted 78% and 92% of the eigenvalues for the distance matrices of the Elbe and Rhine river systems, respec-
tively. A comparison of the PCoA plots for the Elbe and Rhine data is provided in the Supplementary Information 
(Fig. S1).

Both PCoAs were conducted using the wcmdscale function in the R package vegan30.

Calculation of a sediment-quality-based index. The toxic potential of the sediment was determined 
using an index based on sediment quality criteria defined for each of the measured contaminants. Threshold sed-
iment concentrations of the contaminants, above which toxic effects on benthic macroinvertebrates are expected 
(i.e., probable effect concentrations, PECs), were taken from De Deckere et al.31. The PEC quotient (PEC-Q) was 
calculated for each chemical, with the mean PEC-Q of eight metals (mean PEC-Qmet) and 26 organic chemicals 
(mean PEC-Qorg) serving as a good approximation of the combined effects of the multiple contaminants in the 
sediment32.

Nematode community. The dataset for the Elbe river system comprised 115 samples and that for the Rhine 
59 samples. The similarities of the communities were estimated using a non-metric multidimensional scaling 

Figure 1. Map of the sampling sites (black points) within the Elbe (left) and Rhine (right) river systems. The 
blue line indicates the Elbe and Rhine rivers, and the gray lines the tributaries.
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Variable Unit Mean (SD) Min Max

Elbe

Physical

  Grain-size fraction F1 % 2.4 (6.0) 0 51.8

  Grain-size fraction F2 % 40.4 (26.1) 1.1 99.7

  Grain-size fraction F3 % 16.6 (10.2) 0.3 47.2

  Grain-size fraction F4 % 39.5 (23.0) 0 87.4

  River km km 520.2 (255.4) 2.9 950.4

Element

  Aluminum (Al) % 3.3 (1.0) 0.7 6.4

  Calcium (Ca) %

  Ferric (Fe) % 4.8 (1.6) 1.0 9.3

  Lithium (Li) mg/kg

  Magnesium (Mg) % 0.6 (0.2) 0.09 1.2

  Manganese (Mn) mg/kg 1,843.1 (1169.8) 444.0 6,240.3

  Nitrogen (N) g/kg 3.2 (3.2) 0 19.0

  Phosphorus (P) g/kg 3.7 (1.8) 0.9 12.3

  Sulphur (S) g/kg 3.1 (3.4) 0 15.0

  Total organic carbon (TOC) g/kg 38.7 (30.5) 0.1 155.2

Ecotoxicological

  Mean PEC-Qmet 2.3 (1.9) 0.02 15.6

  Mean PEC-Qorg 2.4 (3.2) 0.01 23.5

Spatial

  Geographical PCoA vector 1 5,745.5 (101,193.2) −168,133.3 208,930.9

  Geographical PCoA vector 2 −3,162.4 (40,087.5) −130,493.3 111,076.2

  Dendritic PCoA vector 1 32.5 (170.1) −244.6 343.8

  Dendritic PCoA vector 2 −12.4 (75.2) −175.7 250.1

  Altitude m 52.3 (43.7) 1 377

Rhine

Physical

  Grain-size fraction F1 % 5.8 (13.5) 0.0 58.5

  Grain-size fraction F2 % 30.7 (25.8) 0.4 97.3

  Grain-size fraction F3 % 14.7 (8.5) 0.2 37.0

  Grain-size fraction F4 % 46.9 (25.9) 0.2 93.9

  River km km 543.3 (367.8) 2.5 1062.8

Element

  Aluminum (Al) % 5.7 (4.0) 2.5 18.0

  Calcium (Ca) % 3.4 (3.1) 0.4 12.1

  Ferric (Fe) % 3.8 (0.6) 2.4 4.8

  Lithium (Li) mg/kg 61.7 (19.2) 33.2 105.9

  Magnesium (Mg) % 1.0 (0.3) 0.5 1.6

  Manganese (Mn) mg/kg 1142.9 (472.8) 565.3 3001.6

  Nitrogen (N) g/kg 1.4 (1.5) 0.1 5.6

  Phosphorus (P) g/kg 1.8 (0.5) 1.0 3.1

  Sulphur (S) g/kg 0.8 (1.0) 0.0 4.9

  Total organic carbon (TOC) g/kg 16.6 (14.9) 0.2 46.0

Ecotoxicological

  Mean PEC-Qmet 0.8 (0.6) 0.04 4.8

  Mean PEC-Qorg 0.5 (0.3) 0.01 1.5

Spatial

  Geographical PCoA vector 1 −2,8491.0 (105,633.2) −223,190.5 260,480.1

  Geographical PCoA vector 2 2,360.4 (38,177.9) −82,108.6 66,033.2

  Dendritic PCoA vector 1 −3.0 (140.2) −274.1 431.4

  Dendritic PCoA vector 2 −40.6 (149.8) −355.7 152.4

  Altitude m 110.4 (100.6) 8.0 460.0

Table 1. Summary statistics of the physical, ecotoxicological, and spatial variables and of the elements from 115 
samples from the Elbe river system and 59 samples from the Rhine river system.

https://doi.org/10.1038/s41598-019-51245-2


5Scientific RepoRtS |         (2019) 9:14716  | https://doi.org/10.1038/s41598-019-51245-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

(NMDS) procedure, calculated using the Bray-Curtis similarity index, and applied to the abundance and to the p /a 
data of the Elbe and Rhine samples. For each dataset, three NMDS axes were included, resulting in a stress value of 
0.19 for both. The Inclusion of more than three axes appeared to be meaningless, as the resulting reduction in stress 
was insignificant. NMDS was calculated using the metaMDS function of the vegan package30 in the R environment.

Boosted regression tree (BRT) analysis. Calculation of a BRT model using Elbe data. A boosted regres-
sion tree (BRT) analysis was used to identify the variables potentially responsible for the structure of the nema-
tode community. A comprehensive introduction to the application of BRT models in ecological datasets is given 
in Elith et al.33. BRT models combine a number of decision trees to yield one large model. The optimal number of 
trees was defined using k-fold cross-validation (k = 10) to avoid overfitting. In each step of BRT model develop-
ment, a certain proportion of the dataset is drawn at random. The parameter that specifies the size of this propor-
tion is the bag fraction (bf). In our study, the bf was set to 0.75. The learning rate (lr) defines the degree to which 
each new tree contributes to the whole model and in this study was set to lr = 0.001, such that in each model at 
least 1000 trees were reached, as recommended by Elith et al.33. The tree complexity (tc) reflects the interaction 
depth and was set to tc = 2, as recommended for relatively small data sets33.

The relative influence (RI) of each predictor was calculated in the single decision trees using the sum of 
squared improvements at all splits determined by the predictor. This relative influence was then averaged over 
the >1000 trees included in the whole BRT model and scaled between 0 and 10034. Therefore, the RI values were 
not equivalent to the percentages of the explained variance, as is the case in other statistical methods often used 
in metacommunity assessments. In addition, a p value indicating the significance of the model’s coefficients vs. 
conventional regression models could not be defined using BRT models33. However, the higher the RI value of 
a predictor, the greater its contribution to the sorting of the dataset by the whole BRT model. Therefore, in our 
analysis, the RIs were proportional to the influence of these variables on nematode community structure.

For cross-validation and calculation of the model, the gbm.step function of the dismo package35 in the R envi-
ronment was applied.

BRT models were calculated using all of the predictors listed in Table 1 and two temporal variables (Year: 2000–
2013; Season: Spring, Summer, Autumn, Winter) and each of the three axes of the NMDS of nematode abundance 
and p/a data as response variables (in total, 6 models calculated). Grain-size fraction F4 was excluded from the pre-
dictor set in the models because it was already determined by the other three grain-size fractions (in total: 100%).

For a better interpretability of the results we summarized the RI for the three NMDS axes into a single RI (for 
p/a and abundance data respectively) by calculating a weighted average. Weighting was based on the relative stress 
reduction resulting from the inclusion of one additional axis into the NMDS model (explained in Supplementary 
Information Text). We are aware that NMDS axis 2 in a two-dimensional plot is not the same as NMDS axis 2 in 
a three-dimensional plot. However, the two axes are extremely similar (the correlation coefficients were >0.94) 
and the better interpretability offered by the former justifies its use.

Using the Elbe model to predict the Rhine data. The performance of models obtained from the Elbe 
data were tested using the Rhine data. Therefore, predictions for the Rhine communities were obtained using the 
model constructed from the Elbe data, by supplying it with the abiotic data describing the Rhine samples. The 
predicted community similarities were than compared to the real community similarities of the Rhine samples. 
Predictions were made using the predict.gbm function of the gbm package36.

The predictive performance of the models on the Rhine river system was evaluated using evaluation statistics 
according to Potts and Elith37:

 (1) Pearson’s correlation coefficient (r) was used to test the relative similarity of the observed and predicted 
values; a perfect correlation (r = 1) does not imply that the predictions were exact, but that they were either 
correct or biased in a consistent direction.

 (2) Spearman’s rank correlation (ρ) provided an indication of how the degree of agreement between the ranks 
of observed and predicted values.

Ethical approval. All applicable institutional and/or national guidelines for the care and use of animals were 
followed.

Results
Nematode community. The 115 samples comprising the Elbe dataset (Supplementary Information 
Table S2) and the 59 samples comprising the Rhine dataset (Table S2) contained 245 and 231 nematode spe-
cies, respectively. A detailed list of nematode abundances in each sample is given as supplementary information 
(Table S1). From 314 species that were identified, the 10 most common species are listed in Table 2. Seven of these 
species occurred in both river systems (Table 2). Eumonhystera filiformis and Tobrilus gracilis predominated in 
the Elbe and Rhine river systems, occurring in >85% of the samples, whereas 69 species occurred solely in the 
Rhine samples and 83 solely in the Elbe samples. The NMDS of abundances and the p/a data divided the Elbe and 
Rhine samples mostly along the first axis but with considerable overlap of the respective communities (Fig. 2).

Model output. In most cases the performance of the BRT models was satisfactory, as indicated by the low 
total deviance and high correlation coefficients within the cross-validation process (Table S3). Regarding the 
first NMDS axis there was a drop in the correlation between the training and cross-validation data, suggesting 
the occurrence of overfitting. This effect might have been due to the limited amount of data and thus the small 
proportion available for model cross-validation. However, it did not appear in the other models.
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The RIs of the predictor variables of the models regarding the p/a and abundance data were similar (Fig. 3). In 
both cases, the parameter “elements” was the most important (p/a: 37%; abundance: 48%). Among the elements 
analyzed, N had the strongest association with community structure, as described by the abundance data (18%), 
followed by Mg (10%) and S (7%). Also, for the p/a data S (10%) and N (9%) were the most important elements. 
For both data types, the high RI values of the sampling year (16%) indicated a temporal dynamic for the nem-
atode communities. Therefore, together with the predictor season the temporal parameter group was in both 
cases the second main source of variation. RI values of the spatial variables were 17% for both data types, with a 
high impact of the dendritic position of the sites (Dendritic PCoA 1: 8% and 10%). Furthermore, the community 
structure varied along physical gradients, especially the grain-size distribution (17% and 9%, respectively). The 
toxic potential of the sediment, indicated by the mean PEC-Q-values, had less influence (10% and 7%). Thus, 
overall, environmental variables accounted for 64% of the RIs and were therefore more important than spatial 
parameters in determining nematode community structure. The high RI value of the environmental parameter 
group was also influenced by the larger number of tested predictors. However, in a comparison restricted to single 
parameters, the RI values of the environmental predictors (N and S) were higher than those of the spatial ones, 
thus demonstrating that the number of predictors did not alter this conclusion.

A comparison of the results obtained with p/a vs. abundance data revealed a large shift in RI values: The 
impact of N as determined from the abundance data was twice as strong as that indicated by the species assem-
blages. Physical parameters and the ecotoxicological potential of the sites were, however, more important influ-
ences on the simple occurrence of a species than on its abundance.

Predictions applied to the Rhine data. For the p/a data, both evaluation statistics showed significant 
correlations between the predicted and observed data for nematode community similarities in the Rhine sam-
ples with respect to the all NMDS axes. While the predictions were best for the second NMDS axis (correlation 
coefficients >0.75; p < 0.001), those for the first axis of community similarities were poorer but still satisfactory 

Species

Number of presences in

Total Rhine Elbe

Eumonhystera filiformis (Bastian, 1865) 167 54 113

Tobrilus gracilis Bastian, 1865 149 52 97

Monhystera paludicola de Man, 1880 134 45 89

Dorylaimus stagnalis Dujardin, 1845 113 45 68

Eumonhystera pseudobulbosa (Daday, 1896) 111 40 71

Monhystera stagnalis Bastian, 1865 100 41 59

Brevitobrilus stefanskii (Micoletzky, 1925) 93 (23) 70

Eumonhystera vulgaris (de Man, 1880) 81 35 46

Daptonema dubium Bütschli, 1873 78 35 (43)

Eumonhystera longicaudatula (Gerlach & Riemann, 1973) 76 32 (44)

Tripyla glomerans Bastian, 1865 72 (16) 56

Filenchus vulgaris (Brzeski, 1963) 69 35 (34)

Chromadorita leuckarti (de Man, 1876) 61 (15) 46

Table 2. Ten most common nematode species of the 115 Elbe and 59 Rhine samples; numbers in parenthesis 
means species that are not within the ten most common of the respective river system.

Figure 2. NMDS plots of nematode presence/absence (a) and abundance (b) data from 115 Elbe (triangles) and 
59 Rhine (circles) samples.

https://doi.org/10.1038/s41598-019-51245-2


7Scientific RepoRtS |         (2019) 9:14716  | https://doi.org/10.1038/s41598-019-51245-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

(r = 0.5 and ρ = 0.45; p < 0.001). By contrast, the overlap with observations was smallest for the NMDS axis 3 
predictions (r = 0.28; ρ = 0.29 p < 0.03). Predictions calculated by the model trained with the first NMDS axis of 
the Elbe abundance data were not statistically validated (r = 0.10, p = 0.445; ρ = 0.12, p = 0.383) whereas for the 
second axis the predictions correlated well with the observations (r = 0.83; ρ = 0.77; p < 0.001). Predictions for 
the third axis were significantly associated with the real values but the correlation coefficients were small (r = 0.42, 
p < 0,001; ρ = 0.34, p = 0.008).

Discussion
This is the first study to document the influence of environmental, spatial and temporal variables on the meta-
community structure of nematodes in a river network. As such, it contributes to closing the gap left by previous 
studies, in which meiobenthic organisms were rarely included. The calculated models identified the drivers of 
nematode community similarities in terms of species occurrence and abundances and yielded reliable predictions 
for community similarities in a distinct river system.

Figure 3. The relative influences of several predictors on nematode community similarities based on (a) 
presence/absence data and (b) abundance data determined using boosted regression tree models. The variables 
were assigned to five groups: Elements (black), temporal (light gray), spatial (middle gray), ecotoxicological 
(dark gray), and physical (white).
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Species sorting as a key driver of nematode metacommunity structure. Contrary to hypothesis 
(H1.1), our results showed that environmental rather than spatial variables were the prevailing influence on com-
munity similarities, thus suggesting that the communities were mostly controlled by species sorting. This implies 
nematode dispersal rates of intermediate strength1,38 and therefore that nematode species are sufficiently mobile 
to allow the colonization of favorable habitats, but their dispersal rates not high enough to induce strong mass (i.e. 
source-sink) effects. Our findings are in contrast with the results of the two other studies of meiobenthic meta-
communities in stream networks13,14, in which ostracod community variances were better explained by spatial 
than by environmental predictors. Lower dispersal rates of ostracods than nematodes could explain why they are 
more strongly affected by dispersal limitation, although methodological differences in the respective studies could 
also have induced different outcomes, making such conclusions weak. Accordingly, the difference in spatial struc-
ture could have been an artifact of non-measured, spatially structured environmental variability39; alternatively, 
nonlinear environmental patterns may have been captures by spatial variables40. Further, both ostracod studies 
used p/a data, which mostly are less associated with species sorting than are abundance data39.

However, several other studies identified environmental conditions as key drivers of spatial community struc-
ture41, including that of diatoms42, macroinvertebrates12,43–45, and fishes12,43,46. The addition of nematodes to these 
already very different organismal groups provides further evidence of the high connectivity of sites within river 
networks, independent of the dispersal mode (passive or active) and aquatic zone (benthic or pelagic). Lentic 
systems, by contrast, are more isolated from surrounding aquatic habitats and may be more strongly influenced by 
spatial variables due to dispersal limitations41,47. Indeed, metacommunity studies of nematodes in lentic systems 
have revealed a significant, primary spatial structure of those communities, although these studies were con-
ducted on spatial scales substantially smaller than the 480-km scale of the river network of the present study48,49.

Interestingly, a high RI value was assigned to the predictor year, showing a strong temporal dynamic within 
the nematode communities. In fact, with respect to species composition, the sampling year was more important 
than any of the other tested factors. Most metacommunity studies have not considered samples acquired over a 
timespan as long as that of our study, and the influence of temporal dynamics was for the most part assumed to 
be small9. By contrast, our study documented a shift in community assembly over time that may have been due 
to temporary changes in the environment, such as environmental disturbances, or to the incidental immigration 
and emigration of species. For example, nutrient addition, induced by the runoff of fertilizers from neighboring 
agricultural land, or extreme climate conditions, as occurred in the summer of 2003, could have led to strong 
changes in nematode community assemblies50,51.

Shifts in the role of predictors for p/a vs abundance data. In terms of the abundance composition 
of species, the nitrogen content of the sediment was the strongest structuring gradient. This finding is in agree-
ment with previous field and laboratory studies that identified the ability of nutrient enrichment to strongly shift 
the structure of nematode assemblages50,51. By contrast, nitrogen and other elements were poorer predictors for 
pure species assemblages, whereas the RI values of physical factors such as grain size distribution increased. 
Nematodes live in the interstitial, the size of which is dependent on the granulometry. Accordingly, nematode 
species of differing morphology (e.g. slender or compact) will depend on different sediment structures for growth 
and survival52,53. Thus, elements such as nitrogen may increase or decrease nematode abundances but are less 
important than physical factors regarding the basic occurrence of nematodes. Similarly, the ecotoxicological char-
acteristics of the sediment seemed to be of greater importance for the simple presence rather than the abundance 
of a species.

Watercourse distance is more important than Euclidean distance. Within the spatial variables, the 
RI values of the dendritic coordinates were higher than those of the geographic coordinates, which implied that, 
in structuring nematode communities, the watercourse distances of sites were more important than Euclidean, 
overland distances as it was assumed by hypothesis (H1.2).

The two processes that would lead to a spatial structure are dispersal limitation and mass effects. A detailed 
interpretation of the role played by those processes requires that the dispersal ability of the studied species be 
taken into account42, but for many aquatic organisms, including nematodes, this information is lacking54.

In many studies, the difference in the amount of variance explained by Euclidean and watercourse distances 
has been insignificant3. By contrast, in our study, watercourse position was almost twice as important for meta-
community structure as geographic position, indicating a difference between nematode dispersal ability overland 
vs. in water. Padial et al.9 compared the drivers of metacommunity structure with respect to a broad range of 
organismal groups and found that those with comparatively low dispersal ability, and therefore dependent on 
river network dispersal, are more strongly affected by watercourse than by Euclidean distances.

Applicability of the model to the Rhine river system. Metacommunity studies in lotic systems have 
mainly focused on single river networks. However, of interest to environmental management is whether the 
detected patterns are applicable to other river networks. Studies that included more than one river system in their 
analysis have identified a river-specific influence on the diversity distribution55,56, although in this context the 
effect of river identity cannot be easily disentangled from that of its different spatial locations8,57.

In our study, the predicted values for the community similarity of nematodes based on p/a data correlated 
significantly with the real data but the predictions were less precise for the first and third NMDS axes. However, in 
both cases the values of the correlation coefficients obtained in the evaluation of the model were within the range 
of those of the cross-validation correlation coefficients (Tables S3, S4); specifically, the predictions within the Elbe 
data set were not better than those for the Rhine data set. Also, regarding the abundance data, the predictions of 
community similarities were best for the second axis whereas for the first and most important dimension the pre-
dictions did not reflect the observed values. This discrepancy can be explained by considering that the nitrogen 
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content of the sediment, which was the main predictor in the Elbe model, did not cover such a wide gradient in 
the Rhine data (Table 1, Rhine: 1.4 ± 1.5 g/kg; Elbe: 3.2 ± 3.2 g/kg). Therefore, hypothesis (H2) could only partly 
be confirmed: Transfer of the model constructed based on the Elbe river system to the Rhine river system was 
effective only for p/a data. Yet, this result implied that similar processes shape the nematode species compositions 
of the two river networks.

conclusion
In addition to a high temporal dynamic of nematode communities, environmental predictors, especially the 
nitrogen content of the sediment, best explained the community composition of nematodes in terms of p/a and 
abundance. This result suggested that species sorting is the main driver structuring nematode metacommunities 
along the Elbe river network. Nevertheless, because shifts in the importance of predictors of community similar-
ities with regard to both data types were identified, in future studies we recommend a stricter differentiation of 
the results according to the analyzed data. As most metacommunities have imprints of different mechanisms41, 
we also found indications that spatial factors, especially the river network position, influence nematode com-
munities. Our model well predicted changes in the species composition in the Rhine river system but its predic-
tive ability regarding abundance compositions was limited. However, our study shows that the consequences of 
changes in environmental factors or habitat connectivity for aquatic communities, irrespective of river network 
identity, can be quantified.

Data Availability
All data are included as Supplementary Information.
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