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Abstract Nematodes colonize almost all aquatic

habitats worldwide. Despite their small size, restricted

locomotion and lack of pelagic larvae, they can reach

even isolated habitats within a short time. In this

review, we examine the underlying dispersal modes,

considering their active movement in substrates and

water, their drift by water and wind, rafting, zoochory

as well as human-mediated vectors. These modes are

limited by morphology and habitat structure, ecolog-

ical factors and especially by hydrodynamics. Active

dispersal is effective over short distances, but with

increasing water-flow velocity, passive dispersal

modes, which enable long-range transfer, become

important. In fact, the transport of nematodes over

thousands of kilometers via ship water tanks and by

hitchhiking on sea turtles has been documented.

Overland dispersal vectors include wind and birds

whereas rafting enables an aggregated distribution

because food is available, and reproduction is possible

onboard the rafts. The diversity of possible dispersal

modes is high and offers a reasonably chance for

gravid females or groups of nematodes to be trans-

ferred even to remote environments. Their immigra-

tion is continuous, and supported by their rapid,

parthenogenetic reproduction, nematodes are effective

pioneers with the ability to (re)colonize new or

disturbed habitats or rebalance already existing

communities.

Keywords Meiofauna paradox � Rafting �
Zoochory � Drifting � Wind dispersal � Locomotion

Introduction

Nematodes are the most abundant metazoans in the

biosphere and colonize nearly all aquatic and semi-

aquatic habitats worldwide. They can be found in

permanent lotic and lentic surface waters, such as

lakes and streams, and in the seabed. They have also

been collected from high-altitude lakes (up to 5,600 m

above sea level) (Andrássy, 1978; Tsalolikhin, 2014),

from deep-sea regions (down to 11,000 m below sea

level) (Bik et al., 2010; Leduc & Rowden, 2018) and

from caves and groundwater (Muschiol et al., 2015).

In addition to these large-scale and permanent habi-

tats, nematodes inhabit small, isolated and temporal

environments, such as heat outlets or the volcanos of

isolated islands (Muschiol & Traunspurger, 2009;

Portnova, 2009; Schabetsberger et al., 2009; Portnova

et al., 2011; Schabetsberger et al., 2013), ephemeral

ponds with no connection to other waters or created by

melt water or subject to sporadic desiccation and
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surrounded by desert or ice (Suren, 1990; Pinder et al.,

2000; Chan et al., 2005), as well as water collections in

plant components (phytotelmata) (Kitching, 2000;

Ptatscheck et al., 2015a; Robaina et al., 2015; Zotz &

Traunspurger, 2016).

Within these marine and freshwater habitats,

nematodes can occur in considerable abundances,

reaching densities of millions of individuals per square

meter (Traunspurger, 2000; Michiels & Traunspurger,

2005a; van Gaever et al., 2006; Schroeder et al., 2012;

Traunspurger et al., 2012) and representing numerous

species. For example, Beier & Traunspurger

(2003a, b, c) identified up to 113 nematode species

in * 100-cm3 sediment samples (26-cm2 sediment

area) obtained from 2 streams during a 1-year period

and Traunspurger (1996a, b) collected 116 species

from a sediment sample of the same size from Lake

Königssee. As an essential trophic link between the

microbenthos (e.g., bacteria or rotifers) and larger

organisms (macroinvertebrates or even juvenile fish),

nematodes are crucial to nutrient cycling and energy

flow in benthic environments.

A consideration of marine and freshwater nema-

todes on a global scale shows specific and non-random

distribution patterns for many species (Artois et al.,

2011; Moens et al., 2013; Zullini, 2014) whereas

others were found to be ubiquitous. In their study of 18

nematode species from the Galapagos Islands, Abebe

& Coomans (1995) showed that 10 were cosmopoli-

tan, 6 were at least common in the southern hemi-

sphere and the remaining 2 were newly described

species. For example, Rhabdolaimus terrestris de

Man, 1880 was collected from the Galapagos Islands

but also inhabits bromeliad phytotelmata in Panama as

well as European, Ethiopian and Himalayan lakes and

Vietnamese streams (Traunspurger, 1995; Gusakov

et al., 2011; Ristau & Traunspurger, 2011; Schroeder

et al., 2012; Tsalolikhin, 2014; Zotz & Traunspurger,

2016). Genetic studies have provided evidence of gene

flow between metacommunities separated by hun-

dreds of kilometers and therefore of the possible

dispersal range of nematodes (Bik et al., 2010;

Apolônio Silva de Oliveira et al., 2017; de Groote

et al., 2017). However, it is generally assumed that

gene flow is mostly limited to distances\ 100 km

(Derycke et al., 2008, 2013; Hauquier et al., 2017).

Cerca et al. (2018) showed in their review that, based

on molecular investigations, even amphi-oceanic

distribution of marine meiofauna taxa seldom occurs.

At local and habitat-based scales, the high distri-

bution potential and importance of nematodes as

pioneer organisms become obvious. Studies of artifi-

cial water-filled tree holes demonstrated their colo-

nization by rotifers and especially by nematodes

within a few days, despite the clear delimitation of

these small island-like habitats and their isolation from

other aquatic sources (Ptatscheck & Traunspurger,

2014; Ptatscheck et al., 2015a). Similarly, the rapid

immigration of nematodes and other meiobenthic taxa,

including rotifers and microcrustaceans, within a

single tidal cycle or a few days was described in

studies on the colonization of azoic substrate patches

in tidal areas, lakes and streams (Boulton et al., 1991;

Peters et al., 2007; Boström et al., 2010). However, in

other studies from freshwater and marine environ-

ments (Chandler & Fleeger, 1983; Duft et al., 2002;

Guilini et al., 2011; Zhou et al., 2015), even after

weeks there was no complete adaptation of the species

composition in the defaunated substrate or from the

surrounding source habitats. Investigations on the

colonization of ice after iceberg scouring and ice shelf

collapses by meiofauna showed that nematodes, next

to ostracods and copepods, are among the pioneer

organisms, but the recovery process is slow (up to

years) (Lee et al., 2001a, b; Hauquier et al., 2016). All

those studies well demonstrated that dispersal is a key

factor in understanding the structuring of nematode

populations.

In addition to survivability, fecundity and sexual

maturity, the dispersal potential of an organism is a

crucial feature of its life history and sustained

existence (Bonte & Dahirel, 2017). Dispersal

describes all movements of an individual or a

propagule that lead to a spatial gene flow (Ronce,

2007). It can be distinguished in three successive

phases: (1) emigration from the source habitat, (2)

active or passive transfer to another habitat and (3) the

final immigration (Bowler & Benton, 2005; Bonte

et al., 2012). The actual translocation (emigration and

transfer) is often considered separately from the

subsequent establishment processes comprising immi-

gration (e.g., Nathan, 2001; Hessen et al., 2019).

Dispersal enables individuals to avoid adverse living

conditions (e.g., competition or predation) but also to

recolonize habitats after catastrophic events or stabi-

lize and expand the diversity of an existing community

(Valanko et al., 2015). At the same time, high levels of

interchange, for example between connected ponds
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(Akasaka & Takamura, 2012), can lead to the

homogenization of communities, a decrease in b-
diversity or the dominance of a single, competitive

taxon (Leibold et al., 2004; Matthiessen et al., 2010).

The intensity of dispersal is thus a decisive factor in

defining the diversity and stability of communities

(Leibold et al., 2004; Cadotte, 2006; Howeth &

Leibold, 2010; Matthiessen et al., 2010; Carrara et al.,

2012; Valanko et al., 2015).

Dispersal also ultimately affects the distribution

and composition of benthic invertebrates (Grönroos

et al., 2013; Kärnä et al., 2015; Tonkin et al., 2018;

Tornero et al., 2018; Gansfort & Traunspurger, 2019).

However, these organisms are inhabitants of aquatic

islands that are often not directly connected to similar

habitats but are instead surrounded by a ‘‘dry ocean’’

(Incagnone et al., 2015). Furthermore, meiobenthic

organisms such as nematodes are usually not associ-

ated with rapid movement and do not have pelagic

larvae, such that dispersal within a habitat is unlikely.

Thus, in referring to this so-called meiofauna paradox,

Giere (2009) rightly asked: How can we explain a

wide distribution of animals with almost no dispersive

capacity? In this context, Cerca et al. (2018) already

pointed out that the dispersal potential of meiobenthic

organisms has been considerably underestimated in

the past and the meiofauna paradox is rather to be

regarded as a paradigm.

In this review, we consider the dispersal of free-

living nematodes from permanent freshwater and

marine habitats, although some of the discussed

dispersal modes, such as wind drift and transport on/

in larger animals, are also relevant for terrestrial

species. However, due to their sometimes very

(species-) specific dispersal, parasitic taxa were

excluded. In focusing on the translocation (emigration

and transfer) aspect of dispersal, we specifically asked:

By what pathways can nematodes reach a given

habitat? What are the triggers and influencing factors

that determine nematode dispersal? How relevant are

these modes for long-range dispersal?

A major difficulty in compiling this review was the

comparability of the analyzed datasets since the

included studies sometimes employed very different

methodologies. Notably, the mesh sizes of the sieves

used to extract the organisms of interest ranged from

1.2 to[ 250 lm. In the study of Boulton et al. (1991),

a mesh size of 63 lm did not hinder nematode entry

into the investigated enclosures. Recent studies

showed that even a mesh size of 35 lm does not

result in the retention of all nematodes from a

suspension (Ptatscheck et al., 2015b; Kreuzinger-

Janik et al., 2018). Consequently, nematode abun-

dance and diversity are often underestimated. In

addition, many studies included in this review were

primarily designed to investigate larger organisms,

with nematodes collected accidentally and thus men-

tioned only incidentally. Therefore, to avoid misinter-

pretations, we generally refrain from detailed

comparisons of the nematode densities determined in

different studies and habitats.

The majority of studies on nematode dispersal have

been carried out in marine environments, with an

emphasis on water drift vs. active crawling/swimming.

Reviews of the single dispersal modes of marine

meiofauna (benthic invertebrates retained on a net

with a mesh size of 44 lm); Giere (2009) can be found

in Palmer (1988a), Armonies (1994) and Thiel &

Gutow (2004b) whereas our review provides the first

detailed descriptions of all relevant dispersal modes

detected in both marine and freshwater nematodes,

i.e., (1) active dispersal within a water body (swim-

ming and crawling), (2) passive dispersal by water

drift, (3) rafting on floating items, (4) hitchhiking in/on

animals (endozoochory and epizoochory), (5) wind

drift and (6) anthropogenic vectors (Fig. 1).

Traits relevant for dispersal

Locomotion

The alternating contractions of the dorsal and ventral

longitudinal muscles of nematodes are solely respon-

sible for their active locomotion. The resulting undu-

latory movement, in which backward pressure is

exerted against different forms of external resistance,

pushes the nematode body forwards along the sub-

strate (Gray & Lissmann, 1964; Wallace, 1968). The

form and frequency of these contractions and thus the

nematode’s progress depend on the surrounding

medium. Due to its multilayer cuticula, the nematode

body is less compressible such that the pore size of the

sediment is an important parameter determining the

speed of nematode movement. Larger nematodes

move faster through the sediment than smaller ones,

but the maximum speed is reached when particle

diameters are three times smaller than the body length
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of the worm (Wallace, 1968; Soetaert et al., 2002).

With decreasing particle diameter, mobility is increas-

ingly impaired because the interstitial spaces are

narrower. In coarse sediment fractions, in which

particle diameters exceed a third of the worm’s length,

locomotion is independent of particle size as the

nematode then swims (Wallace, 1958, 1968). Thus,

both sediment structure and nematode body width

determine whether a nematode slides unimpeded

through the interstitial or instead burrows (Wieser,

1959; Tita et al., 1999). In fine sediments with an

incomplete interstitial system, nematodes with long,

thin body shapes are at an advantage over those that

are shorter and/or thicker. In addition to body length

and width, the shape of the nematode tail provides

insights into nematode locomotion, as long-tailed taxa

exhibit greater mobility and maneuverability and are

thus largely found in fine sediments (Thistle &

Sherman, 1985; Schratzberger et al., 2007).

In liquid medium, the wavelength, amplitude and

frequency of the alternating contractions of nematodes

are stronger and compensate for the reduced propul-

sion compared to that in sediments (Gray & Lissmann,

1964). In the water column, for example, the propul-

sive thrust must exceed the nematode’s body weight;

otherwise the nematode will sink (Wallace & Don-

caster, 1964; Wallace, 1968). Small nematodes are

better able to remain in the water column because,

unlike larger individuals, their undulatory movement

is not hampered by viscosity (Crofton, 1966). This was

demonstrated experimentally by Ullberg & Ólafsson

(2003b) while Thomas & Lana (2011) and Lins et al.

Fig. 1 Overview of the distribution modes and possible geographic ranges of nematodes based on the studies included in this review
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(2013) reported that, congruent with determinations of

the most mobile nematode morphotypes in sediment,

active swimmers were those with thin, uniform, long-

tailed bodies. Together, these morphological adap-

tions suggest that nematode species disperse vertically

and horizontally within the substrate to different

extents and are able to enter the water column by

active movement. Once in open water, nematodes can

theoretically cover distances by swimming and then

actively emigrate back to the sediment.

Little is known about the intrinsic speed of

nematodes and most of the available studies have

focused on terrestrial taxa (Table 1). Moreover, in

most if not all cases, the speed of aquatic nematodes

was assessed in liquid or unnatural media, such as

agar, but not in natural sediments. Jensen (1981)

determined a swimming speed of 50 mm/min for the

marine nematode species Chromadorita tenuis in still

water. Another study showed that nematodes can

swim continuously for at least 1–2 h (Ghosh &

Emmons, 2008). The crawling speed of nematodes

on or through a substrate is significantly slower than

the swimming speed (Table 1). For example, when

placed on agar Panagrellus silusiae can bridge

distances of 30 mm within 1 min (Gray & Lissmann,

1964). The study of Hapca et al. (2007) convincingly

showed that the crawling speed of nematodes in

natural sediment is slower than that in or on agar. In

Table 1 Summary of studies that estimated the velocity (crawling or swimming) of different nematode species in different media

Taxon Body length

(lm)

Medium Distance (mm)

moved/ min

References

Caenorhabditis elegans
(Maupas, 1900)

Different sizes In/on agar 1–15 Ramot et al. (2008)

In/on agar ? food 1–13.5

Chromadorita tenuis (G.
Schneider, 1906)

* 1,000 Water/swimming 50 Jensen (1981)

Haemonchus contortus
(Rudolphi, 1803)

575 On 2% agar 3.1 Gray & Lissmann (1964)

Water/swimming 9.9

Heterodera schachtii
(A.Schmidt, (1871)

Larvae (\ 500) On alginate jelly ? Wallace (1958)

\ 1 lm water film \ 0.05

2–5 lm 1.7

5–10 lm 0.7

10–20 lm 0.3

50 lm 0.2

Panagrellus silusiae (de

Man, 1913)

1,190–1,340 On 1% agar 30.1 Gray & Lissmann (1964)

In 1% agar 27.6

On 1% gelatin 17.5

In 1% gelatin 23.2

Water/swimming 38.4

Phasmarhabditis
hermaphrodita (A.

Schneider, 1859)

* 1,000 On 1.2% agar 9.7 Hapca et al. (2007)

On 1.2% agar ? sand 6.9

Rhabditis In a suspension of starch grains 13.2–31.2 Gray & Lissmann (1964)

Turbatrix aceti (Müller,

1783)

1,500–1,570 On 0.5% agar 15.4 Gray & Lissmann (1964)

In 0.5% agar 17.2

Water/swimming 43.1
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that study, the movement of Phasmarhabditis her-

maphrodita was reduced by 29%, down to 6.9 mm/

min, when a thin layer of sand was added to the agar.

Among meiofauna, nematodes are rather slow, as

copepods have a swimming speed of far over 400 mm/

min and a burrowing speed of up to 16 mm/min while

the burrowing speed of oligochaetes may reach

13 mm/min (Enright, 1977; Yen, 1988; Palmer et al.,

1992).

Surface adherence

Surface adherence is another factor that can affect the

dispersal ability of an organism. In nematodes,

adherence is enabled by the adhesive substances

secreted by the caudal glands, adhesive tubes or strong

setae (Adams & Tyler, 1980; Turpenniemi & Hyväri-

nen, 1996; da Fonsêca-Genevois et al., 2006; Giere,

2009; Tchesunov, 2015). The anchoring ability of

nematodes allows them to stably colonize hard

substrates even in high-energy environments, such

that subsequent dispersal is mostly via rafting.

Behavior

Nematode mobility is also influenced by water

parameters, the availability of food resources and the

community composition (e.g., Wallace, 1968; Robin-

son, 1994; Ramot et al., 2008), all of which may lead

to short-term translocations. de Meester et al.

(2012, 2015) conducted a series of standardized

laboratory experiments and showed that at high

densities nematodes begin to emigrate from their

source habitat. In this context competitive strength

between species plays a decisive role, as species that

are weak competitors emigrate earlier and at higher

densities than strong competitors. Emigration is also

determined by the availability of suitable food

resources, as it is discouraged by sufficient food at

the source habit but stimulated by the absence of food

and by the presence of more suitable sources in

adjoining areas (de Meester et al., 2012). Tita et al.

(1999) showed that different nematode morphotypes

are associated with specific feeding groups, with

smaller ratios of body width:body length typical of

microvores and higher ratios characteristic of epi-

growth feeders and predators.

Additional information on the dispersal behavior of

nematodes comes from observations of their

communities in natural environments. The oxygen

content in benthic habitats is a crucial environmental

factor that determines the dispersal depth of nematode

communities (Platt, 1977; Strommer & Smock, 1989;

Hendelberg & Jensen, 1993; Traunspurger, 1997;

Teiwes et al., 2007). Studies from freshwater and

marine environments have shown that nematodes

mostly colonize the upper layers of the sediment,

while in deeper layers, with their lower oxygen

content, nematode density declines and their commu-

nities are composed by more adapted species. In well-

aerated habitats, such as streams with a coarse

([ 125 lm) sediment size, relocation to deeper layers

is possible (Schmid-Araya, 1997; Eisenmann et al.,

1998; Traunspurger et al., 2015) and reduces the risk

of erosion by a strong flow velocity (Palmer & Gust,

1985; Palmer, 1986; Palmer & Molloy, 1986; Fegley,

1987; Palmer, 1988a; Traunspurger et al., 2015).

Consequently, the tidal cycle can trigger the daily

vertical migration of certain species of marine nema-

todes. However, the upwards migration of some

species when the tide is strongest (Steyaert et al.,

2001; Gallucci et al., 2005; Brustolin et al., 2013)

suggests that factors other than protection from

erosion must be invoked to explain vertical migration.

For example, the occurrence of specific feeding types

is determined by the allocation and quality of food

sources (Soetaert et al., 2002; Neira et al., 2013). This

was also observed by Traunspurger et al. (2015), who

found that bacterial-feeding taxa are restricted to the

upper sediments of streams, as also demonstrated for

epigrowth feeders (Commito & Tita, 2002). Addition-

ally, Traunspurger & Drews (1996) detected a pre-

dominance of juvenile individuals in these habitats.

Experiments have shown that the active movement of

nematodes is influenced by the suitability of habitats

(e.g., the presence of food resources, or habitat

structure) (Jensen, 1981; Ullberg & Ólafsson, 2003b;

Lins et al., 2013; Mevenkamp et al., 2016). Thus,

chemotaxis and the attraction of specific signal

molecules (see also Choe et al., 2012 and literature

therein) can be a powerful driver for the community

composition of marine and freshwater nematodes.

The presence of predators and their physical

disturbance of the sediment can restructure the distri-

bution of nematodes and initiate active dispersal

processes. Predators optimize their predation efforts

by vertical migration while potential prey nematodes

seek refuge in less vulnerable layers of the sediment
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(Steyaert et al., 2001; Gallucci et al., 2008). In the

presence of copepods and chironomids in sediment,

the relative number of nematodes, especially juve-

niles, in the upper layers significantly increased,

caused by an induced vertical relocation (Traun-

spurger et al., 2006). Ólafsson (2003) described the

opposing effects of different organismal groups,

including crustaceans, annelids and mollusks, on

nematode dispersal in sediments. In that study, the

presence of larger organisms often led to the migration

of nematodes into deeper layers. However, whether

this was an escape from predation, or induced by the

physical disturbance caused by the bioturbation, or a

response to the improved aeration in the disturbed

deeper sediment was unclear.

In general, most of the considered studies con-

ducted in natural environments could not clearly show

whether nematode migration was triggered directly by

the respective factor or whether the change in the

community structure was due to environmental filter-

ing. Further studies that minimize influencing factors

such as emigration from adjacent areas or reproduc-

tion and, in the best case, allow observations of

migratory nematodes (according to de Meester et al.,

2012, 2015) would be an approach to investigate the

distribution behavior of nematodes in response to

certain environmental factors.

Dispersal units

According to Fontaneto (2019), the successful long-

range dispersal of meiobenthic sized organisms

requires, inter alia, the presence of propagules and

the long-term resistance of these dispersal units.

Propagules are especially relevant to dispersal outside

the water (e.g., wind drift) (Panov et al., 2004; Nkem

et al., 2006; Incagnone et al., 2015). For nematodes,

dormant eggs, dauer larvae and stages of anhydrobio-

sis that facilitate resistance to high temperature, frost,

desiccation and digestion (see the ‘‘Endozoochory’’

section) for periods partly as long as several decades

(van Gundy, 1965; Watanabe, 2006; Mayer & Som-

mer, 2011) are of particular importance (Fontaneto,

2019). However, while eggs and dauer larvae are

common dispersal units of nematodes, anhydrobiosis

is known from other aquatic invertebrates such as

microcrustaceans or rotifers. However, for nematodes

anhydrobiosis is mainly restricted to terrestrial species

and colonizers of ephemeral aquatic habitats (e.g.,

ponds) and is not a feature of species found in

stable aquatic environments (Crowe & Madin, 1974;

McSorley, 2003; Watanabe, 2006; Tahseen, 2012).

Several studies have investigated egg production by

different freshwater nematodes and reported values of

up to 49 eggs/day (Schiemer et al., 1980; Muschiol &

Traunspurger, 2007; Kreuzinger-Janik et al., 2017).

Those studies also showed that the number of laid eggs

is strongly species-specific and depends on the age of

the female nematode but also on environmental

parameters (e.g., availability of food resources). As

the hatching of juveniles is triggered by factors that

include temperature and moisture, it can be delayed

until environmental conditions are optimal (van

Gundy, 1965). Egg clusters with sticky membranes

are protected from dehydration or erosion and can thus

be dispersed by rafting or zoochory (see later sections

in this review) (Micoletzky, 1922; van Gundy, 1965).

Active dispersal through the sediment

Kappes et al. (2014) compared the dispersal potential

of aquatic and terrestrial taxa (plants, mollusks,

gastropods and dipterans) and showed that the former

are especially successful in covering long distances.

For organisms of meiobenthic size, dispersal mainly

relies on passive modes (Incagnone et al., 2015),

whereas in the case of active movement the maximal

dispersal distance declines with decreasing body size

(Jenkins et al., 2007).

The dispersal of nematodes through the sediment

has been less intensively studied than dispersal in the

water column. In studies on the recolonization of

sediments by meiofauna (Table 2), the immigration of

sediment-crawling organisms was often prevented by

the placement of azoic sediments on impassable

barriers such as trays. Chandler & Fleeger (1983)

were the first to demonstrate that the degree of

immigration of nematodes in azoic sediments by

sediment crawling and water column dispersal was

very similar in a tidal pond. However, whereas

nematodes were the predominant meiofaunal taxon

in the undisturbed sediment ([ 80%), with an abun-

dance sufficient to allow recruitment, even after

29 days their densities in the azoic sediment were

less than a third of those in the source sediment. The

further demonstration that even copepods, which are

very effective dispersers in the water column, could

123

Hydrobiologia (2020) 847:3519–3547 3525



T
a
b
le

2
S
tu
d
ie
s
o
n
th
e
re
co
lo
n
iz
at
io
n
o
f
az
o
ic
o
r
d
is
tu
rb
ed

su
b
st
ra
te
s
b
y
n
em

at
o
d
es

in
w
h
ic
h
th
e
ab
u
n
d
an
ce
s
o
f
se
tt
li
n
g
in
d
iv
id
u
al
s
w
er
e
co
m
p
ar
ed

w
it
h
th
o
se

o
f
n
em

at
o
d
es

fr
o
m

th
e
n
at
u
ra
l
b
ac
k
g
ro
u
n
d
su
b
st
ra
te

L
o
ca
ti
o
n
/h
ab
it
at

C
o
lo
n
iz
at
io
n
ar
ea

(g
ra
in

si
ze
)

A
re
a
si
ze

(c
m

2
)

F
lo
w

(c
m
/s
)

D
ep
th

(m
)

C
o
m
p
ar
is
o
n
w
it
h
th
e

b
ac
k
g
ro
u
n
d
d
en
si
ty

P
at
h
w
ay

R
ef
er
en
ce
s

M
ar
in
e

B
al
ti
c

A
rc
h
ip
el
ag
o

A
zo
ic

cl
ay

se
d
im

en
t

1
,2
0
0

L
o
w

w
av
e

ac
ti
v
it
y

1
–
1
.5

9
%

A
ft
er

2
w
ee
k
s

W
A
ar
n
io

&
B
o
n
sd
o
rf
f
(1
9
9
2
)

A
zo
ic

sa
n
d
y
se
d
im

en
t

1
,2
0
0

H
ig
h
w
av
e

ac
ti
v
it
y

1
–
1
.5

3
0
%

A
ft
er

2
w
ee
k
s

D
ee
p
se
a

A
zo
ic

se
d
im

en
t
?

fo
o
d
so
u
rc
es

1
5
*

2
,4
7
5

2
%

A
ft
er

1
0
d
at
s

S
G
u
il
in
i
et

al
.
(2
0
1
1
)

E
st
u
ar
y
p
o
n
d

A
zo
ic

se
d
im

en
t
(3
8
lm

)
3
7
4
–
4
2
0

0
.1
–
0
.5

1
9
–
3
1
%

A
ft
er

2
9
d
ay
s

A
P

C
h
an
d
le
r
&

F
le
eg
er

(1
9
8
3
)

In
te
rt
id
al

m
u
d
b
ar

D
u
g
-u
p
se
d
im

en
t

9
0
,0
0
0

U
p
to

1
.5

N
o
d
if
fe
re
n
ce
s
af
te
r
0
.5

d
ay
s

A
P

S
h
er
m
an

&
C
o
u
ll
(1
9
8
0
)

In
te
rt
id
al

m
u
d
fl
at

S
ed
im

en
t
d
is
tu
rb
ed

b
y
ar
ti
fi
ci
al

sp
o
ts

0
.6
5
*

–
N
o
d
if
fe
re
n
ce
s
af
te
r
5
h

A
P

B
il
lh
ei
m
er

&
C
o
u
ll
(1
9
8
8
)

In
te
rt
id
al

sa
n
d

fl
at

S
ed
im

en
t
d
is
tu
rb
ed

b
y
ra
y
fe
ed
in
g

*
1
,2
0
6

N
o
d
if
fe
re
n
ce
s
af
te
r
4
–
1
4
ti
d
al

cy
cl
es

A
P

C
ro
ss

&
C
u
rr
an

(2
0
0
4
)

In
te
rt
id
al

sh
o
al

A
zo
ic

se
d
im

en
t
(1
4
1
lm

)
1
7
7

U
p
to

3
5

–
2
0
%

A
ft
er

o
n
e
ti
d
al

cy
cl
e

A
P

F
eg
le
y
(1
9
8
8
)

In
te
rt
id
al

zo
n
e

A
zo
ic

se
d
im

en
t
(3
8
lm

)
7
5
5

1
.2
–
6

–
1
0
%

A
ft
er

3
d
ay
s

A
P

S
u
n
&

F
le
eg
er

(1
9
9
4
)

In
te
rt
id
al

zo
n
e

A
zo
ic

se
d
im

en
t
(\

6
3
l
m
)

6
*

1
.5

2
1
%

A
ft
er

6
0
d
ay
s

A
P

Z
h
o
u
et

al
.
(2
0
1
5
)

In
te
rt
id
al

zo
n
e

S
ed
im

en
t
tr
ap
s

1
.3

1
3
0
–
7
3
0

–
1
1
%

A
ft
er

1
d
ay
s

W
C
o
m
m
it
o
&

T
it
a
(2
0
0
2
)

S
u
b
ti
d
al

zo
n
e

A
zo
ic

se
d
im

en
t

8
7
5

1
1

N
o
d
if
fe
re
n
ce
s
af
te
r
1
m
o
n
th

A
P

O
la
fs
so
n
&

M
o
o
re

(1
9
9
0
)

S
u
b
ti
d
al

zo
n
e

S
ed
im

en
t
d
is
tu
rb
ed

b
y
st
in
g
ra
y

fe
ed
in
g

–
4
.3

2
–
3

N
o
d
if
fe
re
n
ce
s
af
te
r
4
d
ay
s

A
P

S
h
er
m
an

et
al
.
(1
9
8
3
)

S
u
b
ti
d
al

zo
n
e

A
zo
ic

se
d
im

en
t
?

o
il
co
n
ta
m
in
at
io
n

1
,0
0
0

1
N
o
d
if
fe
re
n
ce
s
af
te
r
1
6
d
ay
s

W
A
lo
n
g
i
et

al
.
(1
9
8
3
)

S
u
b
ti
d
al

zo
n
e

A
zo
ic

sa
n
d
(2
0
7
l
m
)

4
9

0
.7
–
1
.0

N
o
d
if
fe
re
n
ce
s
af
te
r
1
d
ay

W
C
o
la
n
g
el
o
&

C
ec
ch
er
el
li

(1
9
9
4
)

S
u
b
ti
d
al

zo
n
e

A
rt
ifi
ci
al

se
ag
ra
ss

b
ed

2
1
7

A
t
le
as
t
1

N
o
d
if
fe
re
n
ce
s
af
te
r
2
d
ay
s

A
P

d
e
T
ro
ch

et
al
.
(2
0
0
5
)

S
w
ed
is
h
fj
o
rd

A
zo
ic

se
d
im

en
t
(1
7
5
lm

)
2
,0
3
5

2
7

3
0
%

A
ft
er

5
2
5
d
ay
s

W
W
id
b
o
rn

(1
9
8
3
)

L
ab
o
ra
to
ry

A
zo
ic

se
d
im

en
t

2
*

N
o
fl
o
w

5
–
2
0
%

A
ft
er

9
d
ay
s

A
P

G
al
lu
cc
i
et

al
.
(2
0
0
8
)

L
ab
o
ra
to
ry

A
zo
ic

se
d
im

en
t
(\

2
m
m
)

1
7
*

N
o
fl
o
w

3
2
–
9
0
%

A
ft
er

1
4
d
ay
s

A
P

S
ch
ra
tz
b
er
g
er

et
al
.
(2
0
0
4
)

L
ab
o
ra
to
ry

A
zo
ic

se
d
im

en
t

1
,3
6
9

N
o
fl
o
w

1
0
–
1
8
%

A
ft
er

4
9
d
ay
s

A
P

U
ll
b
er
g
&

Ó
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not approximate their sediment density during the

same period showed that colonization through the

sediment is a slow process. Much higher recoloniza-

tion rates for nematodes were reported by Schmid-

Araya (2000) in a study of a fast-flowing stream with

coarse gravel. In that setting, recolonization by

nematodes and harpacticoids was completed within

5 days and that by other meiofaunal organisms

(cyclopoids, rotifers and ostracods) within approxi-

mately 2 days. Whether this immigration was primar-

ily due to downstream movement was not

investigated. Although other studies of azoic stream

sediments found evidence of nematode colonization

by upstream movement (Williams & Hynes, 1976;

Williams, 1977), migration by downstream drift

cannot be excluded because in those investigations

the 125-lm nets used to prevent immigration from

other directions would not have been an effective

barrier for nematodes.

Active dispersal in the sediment includes not only

horizontal movement but also vertical displacement.

Nematodes in sediments exhibit a typical vertical

distribution, with time-related and species-specific

vertical preferences discerned in seasonally affected

habitats such as streams or the littoral and profundal of

lakes (Traunspurger & Drews, 1996; Traunspurger

et al., 2015). The constant upward and downward

dispersal of nematodes within relatively short time

intervals may allow the colonization of deposed

substrates from below. Using the same experimental

design, Williams & Hynes (1976), Williams (1977)

and Benzie (1984) showed that up to 62% of the

immigrating nematodes that had colonized the azoic

substrates had done so by vertical movement.

The importance of crawling in the sediment

Both Schratzberger et al. (2004) and Gallucci et al.

(2008) found that large (long and wide) nematodes are

the first to enter azoic sediment by sediment burrow-

ing. The two studies also showed that active dispersal

has significantly different effects on the species

composition of the recolonized and source sediments.

Thus, despite the strong influence of active crawling

on nematode diversity, this type of motility is

restricted to small areas around the source habitat. In

the study of Ullberg & Ólafsson (2003a), the number

of nematodes arriving at a location 36 cm away was

only half that at an area adjacent to the source habitat.

Among the studies on the recolonization of the azoic

substrates listed in Table 2, only one was able to

attribute the alignment (95%) of nematode densities in

the new vs. the background substrate to in-sediment

movement alone. Accurate insights into the active

spread of organisms within the sediment will require

further studies that specifically examine this pathway.

Nematodes are classified as mainly passively

dispersed organisms. While this applies to large

distances, active movement over smaller ranges

should not be underestimated, as demonstrated in a

study of the colonization of disturbed habitats after

predation (Weber & Traunspurger, 2015). The advan-

tages of active locomotion include that emigration is

determined by the organism itself, adverse environ-

mental conditions can be avoided, and favorable

conditions directly pursued. However, the active

dispersal of nematodes in sediments is restricted to

station-keeping movement within a home range (ac-

cording to Schlägel et al., 2020) and is largely

associated with behavior patterns such as foraging or

reproduction (see the ‘‘Behavior’’ section). As such,

because it is unlikely to result in spatial gene flow, it

does not correspond to the definition of dispersal

provided above.

Nematodes in the open water

Numerous studies have described the presence of

nematodes in open waters. For example, Mott &

Harrison (1983) collected up to 46,000 nematodes/m3

in a fast-running stream. In a very early study by Eddy

(1927) and a much later one by Abdel-Aziz & Aboul-

Ezz (2004), the number of nematodes in plankton

samples from lake littorals was as high as 11,000

nematodes/m3. Nematode densities in the water

column are summarized in Table 3. In several of the

cited studies, nematodes are only casually mentioned

or are discussed as bycatch obtained by resuspension

of the sediment during sampling (e.g., Fernando, 1980;

Dimas-Flores et al., 2008).

The majority of studies describing nematodes in

open waters were conducted in relatively high-energy

environments, i.e., those affected by wind, waves,

tides or waterflow along a stream, and in most cases

samples were obtained at heights not more than 1 m

above the substrate. Boeckner et al. (2009) demon-

strated that with increasing height above the substrate
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the number of nematodes in the water column

declines. In that study, 58% of the nematodes were

collected at a height of 0.5 m but only 2% above

6.5 m. Most of the organisms in the water column are

apparently directly (\ 5 cm) above the ground (Sibert,

1981). However, even water layers not in direct

exchange with the substate may contain nematodes.

This was shown by Khalifa et al. (2015), who detected

nematodes at a height[ 15 m above the lake bottom.

In the open ocean, nematodes may be associated with

marine snow, which can also be found a few meters

below the surface (Shanks & Walters, 1997).

Nematodes typically account for\ 33% of the

meiofauna in open water (Table 3) whereas copepods

and, in streams, rotifers and chironomid larvae are

encountered above the substrate in higher numbers.

For example, Palmer (1992) reported that only 2.4% of

the drifting meiofauna collected in a fourth-order

stream were nematodes, while rotifers, oligochaetes,

chironomids and copepods represented 86.2%, 6.9%,

2.9% and 1.5%, respectively. These latter organisms

are more efficient active dispersers and have higher

dispersal rates (Palmer, 1988a; Commito & Tita,

2002; da Fonsêca-Genevois et al., 2006). As shown in

Table 3, most nematodes remain in the substrate,

with\ 3% reaching the open water. However, given

the high abundance of nematodes in the substrate, the

resuspension of even a small percentage may be

sufficient for an effective dispersal in the water

column. According to Artois et al. (2011), 300 million

nematodes representing 38 freshwater species are

transported in the Adda River per day. However, the

composition of those species in the open water may

not be entirely congruous with the composition within

the substrate (Commito & Tita, 2002; da Fonsêca-

Genevois et al., 2006). Therefore, either specific taxa

enter the water column by active movement or not all

species are passively suspended.

Active emigration from sediment

Active entry into open water has been investigated in

microcosm experiments without any flow and thus

able to exclude passive processes. Jensen (1981)

examined active emigration from the substrate and

was able to demonstrate that nearly all nematodes left

the sediment and swam 5 cm upwards, in the direction

of food sources. In the studies of Alldredge & King

(1977) and Walters & Bell (1986), only a small

fraction of the natural nematode composition (\ 6%)

entered the water from the sediment when no food

sources were offered. Armonies (1988a) similarly

showed that in the absence of a food incentive

nematodes did not leave the sediment; however,

96%, 65% and 35% of the copepods, ostracods and

flatworms, respectively, actively emigrated within

24 h.

The entry of meiobenthic organisms into the water

column may depend on the time of day. Palmer (1992)

and Armonies (1994) found that copepods, oligo-

chaetes and rotifers mainly leave the sediment during

nighttime, consistent with active emigration, while a

similar behavior was not exhibited by nematodes.

Clifford (1972) collected higher numbers of meioben-

thic organisms, including nematodes, from the water

column during the day, but whether the time of day

influenced nematode emigration could not be

established.

Passive emigration from sediment

A widely discussed factor in the passive emigration of

nematodes into open water is erosion by flow. An

increase in the number of nematodes and other

meiobenthic organisms in the open water with

increasing flow (e.g., tidal cycles, wave action, storms

or flood events) was demonstrated in several studies of

freshwater and marine habitats (Mott & Harrison,

1983; Palmer, 1986; Armonies, 1988b; Palmer, 1990;

Armonies, 1994; Ullberg, 2004; de Meester et al.,

2018). The dispersal of other meiofauna, mainly

copepods, is significantly less dependent on flow

velocity because these organisms have a higher

potential for active dispersal into the water column

(Palmer, 1988a; Commito & Tita, 2002). Near-bed

flow and the resultant shear stress have an especially

strong impact on organismal transport (Eckman, 1983;

Palmer, 1986). However, for the erosion of nematodes

from sandy sediment, relatively low flow velocities of

9–12 cm/s are sufficient (Palmer, 1992; Thomas &

Lana, 2011) and even a flow rate of\ 3 cm/s allows

the resuspension of single nematodes (Armonies,

1988b). The threshold for the erosion of nematode

individuals can be less than that for the surrounding

sediment; thus, nematodes are not only eroded

together with the sediment but are also leached from

the sediment (Palmer, 1992). For flatworms and

copepods, abundances in the water column are highest
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at low flows (Armonies, 1994), indicating a larger role

of active emigration. However, as more nematodes are

not consistently resuspended in high-energy vs. low-

flow habitats (Boeckner et al., 2009), additional

factors must also determine the number of eroded

nematodes.

Alldredge &King (1977) observed a higher transfer

of nematodes to the open water above fine, sandy

sediments than above coarse particles, although sim-

ilar velocities were measured at the two sites. Because

the critical erosion threshold is lower in fine, sandy

sediments, nematodes are probably removed together

with the sand, while coarser sediment would provide

protection up to a certain flow level. Near-bed

hydrodynamics are mainly affected by the topography

of the sediment and the presence of above-ground

structures (e.g., plants) (Eckman, 1983). For example,

sediment-covering vegetation and surface depressions

lower the shear stress, thus reducing the erosion of

small organisms while simultaneously enhancing

passive immigration by the deposition of nematodes

and other meiobenthic organisms (Anderson & Char-

ters, 1982; Fonseca et al., 1982; Eckman, 1983;

Nowell & Jumars, 1984; Atilla et al., 2005).

Nematodes of the upper sediment layers are highly

likely to be resuspended (Eskin & Palmer, 1985;

Palmer, 1988a; da Fonsêca-Genevois et al., 2006;

Thomas & Lana, 2011). While thin, agile taxa avoid

erosion by migrating to deeper areas, more lethargic

nematodes (especially epistrate feeders) remain in the

surface sediment and are washed away (Eskin &

Palmer, 1985; Tita et al., 1999; Thomas & Lana, 2011)

and their dispersal rates are accordingly higher

(Olafsson & Moore, 1990; Commito & Tita, 2002).

Therefore, the active vertical distribution of nema-

todes within the substrate (see the ‘‘Active dispersal

through sediment’’ section) determines their passive

dispersal by water drift. While, as discussed above, the

presence of predators in the sediment contributes to

shaping the vertical distribution of nematodes and

other meiobenthic organisms, few studies have inves-

tigated the impact of predators on meiofaunal disper-

sal. Ullberg & Ólafsson (2003a) found that the

presence of amphipods had no effect on the active

dispersal of nematodes. Since their study was con-

ducted in microcosms without flow, passive dispersal

processes could be excluded. By contrast, potential

predators (fish, Leiostomus xanthurus) in more ener-

getic habitats significantly increase the number of

nematodes and other meiobenthic taxa (copepods and

foraminiferans) in the water drift (Palmer, 1988b).

This can be explained rather by the biting behavior of

bottom-feeding fish, which would result in the resus-

pension of the nematodes, than by active emigration.

Other types of fish, rays, sharks, manatees, walruses,

waterfowl and even some whales can also cause large

sediment disturbances and thus favor a considerable

erosion of small benthic organisms. Such disturbances

can alter the vertical distribution of meiofauna and

enhance the water dispersal of deep-sediment-dwell-

ing taxa.

Drifting

Unlike the emigration of nematodes from the substrate

to the open water, which can include active and

passive components, subsequent transfer in high

energetic and possibly also low flow freshwater and

marine systems is primarily due to passive drift

(Palmer, 1984; Palmer & Gust, 1985; Palmer, 1990).

In high-energy habitats, the transfer and emigration of

nematodes and other meiobenthic organisms such as

copepods can be attributed to passive particles because

even a low flow velocity can prevent active progress

(Hagerman & Rieger, 1981; Palmer & Gust, 1985).

This was convincingly demonstrated by Palmer

(1990), who showed equal sinking/swimming rates

of living and anesthetized nematodes (0.09 cm/s).

Flood events can also cause organisms to drift between

waters that are otherwise spatially isolated. This

dispersal mode is relevant for several aquatic taxa,

including zooplankton (Dias et al., 2016), macroben-

thos (Petsch et al., 2017) and macrophytes (Akasaka &

Takamura, 2012), and can markedly influence their

local species composition. The spread of nematodes

through flooding has not been reported so far but is

likely.

Transfer back to the substrate

Although nematodes in the open water have essen-

tially no influence on the direction of their journey,

they can delay their sedimentation until suitable sub-

strates are in range. The body length, flexibility,

activity level and adhesiveness of nematodes are

essential factors that determine where nematodes

become deposited in the sediment (Bertelsen, 1997).

Species with the morphological adaptions that allow
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swimming (slim body, long tail) remain in the open

water longer than less active species (de Meester et al.,

2018). In addition, specific behaviors, such as coiling,

which reduces the projected body area of the organ-

ism, can enhance the sinking rate (Bertelsen, 1997).

The accumulation of drifting nematodes attached to

objects (see the ‘‘Rafting’’ section) or to larger

organisms (see the ‘‘Animal dispersal vectors’’ sec-

tion) can increase the time spent in the open water.

Active immigration into substrates by swimming was

observed in laboratory investigations only under no-

flow conditions (Jensen, 1981; Ullberg & Ólafsson,

2003b; Lins et al., 2013; Mevenkamp et al., 2016), but

all of those studies consistently showed that the

settling locations were those with the most suit-

able food sources or habitat structure.

Palmer (1984) estimated the passive settlement rate

of nematodes and reported a settling velocity (calcu-

lated for the total meiofauna) of * 0.15 cm/s. How-

ever, in that study only 36% of the nematodes in the

water column were returned to the sediment. In the

study of Commito & Tita (2002), emigration rates of

drifting nematodes ranged from 1 to 135 individuals/

cm2/day and were mainly influenced by the back-

ground densities in the sediment and by the flow

velocity. At higher flow rates, more nematodes were

collected in bottom traps. As already noted, depres-

sions (e.g., bottom traps, feeding pits, tunnels of

sediment dwellers) promote immigration back to the

sediment. According to Palmer (1986), benthic organ-

isms can affect the roughness of the substrate by

reworking processes and thus influence the critical

erosion velocity, as demonstrated for invertebrates

such as crabs and polychaetes (Luckenbach, 1986;

DePatra & Levin, 1989) but also for fish (Sherman

et al., 1983; Billheimer&Coull, 1988; Cross&Curran,

2004). The latter studies examined the recolonization

of fish feeding pits by meiofauna and showed that

nematode densities in the disturbed area became

comparable to those in the surrounding sediment

within a relatively short time (5 h to 7 days, see

Table 2), presumably due to the suitable hydrodynamic

conditions around the pits and the lower shear stress.

Atilla et al. (2005) demonstrated that artificial

above-ground structures (e.g., bottle brushes) retain

drifting organisms. With the increasing complexity of

the structure (in this case, bristle density), both the

retention and diversity of the captured nematodes

increase significantly due to flow reduction.

Importance of drifting

The distances covered by drifting nematodes are

difficult to determine because tracking over longer

distances under field conditions is challenging. To our

knowledge, only Thomas & Lana (2011) were able to

localize the exact source of nematodes collected from

the water column. In that study, stained nematodes

were trapped 2 m away from the site of their release.

Bell & Sherman (1980) and da Fonsêca-Genevois

et al. (2006) determined the distance to the next known

natural occurrence of the collected species and

concluded that nematodes are able to cover distances

of 500 m. Both Hagerman & Rieger (1981) and

Derycke et al. (2007) reported distances of at least

10 km. In general, the studies presented in this section

suggest that the continuous transport of small organ-

isms (planktic and benthic) by drift occurs in all bodies

of waters with a minimal flow velocity. Furthermore,

for organisms with the necessary traits (e.g., propag-

ules), drift enables a long-range dispersal as well as

translocation between waters and may thus be the most

important transport mode for nematodes and other

mainly passively dispersed aquatic organisms.

Rafting

Rafting, the passive transport of organisms on floating

biotic (e.g., algae, driftwood, marine snow) or abiotic

(e.g., plastic debris or tar balls) items, is a common

dispersal mode for a wide range of terrestrial and

aquatic vertebrates as well as invertebrates in marine

and fresh waters (Thiel & Gutow, 2004b). The organic

items frequently derive from benthic habitats that were

detached by water flow or wind, such that they contain

a complete organismal community. On the other hand,

the raft may be initially unoccupied, as is often the

case for anthropogenic items. In both cases, new

organisms may arrive on the raft during its journey

(Thiel & Gutow, 2004b). Rafting nematodes are

mainly transported on floating substrates (algae,

bacterial mats, marine snow) or on vehicles with at

least temporal contact with the benthos (e.g., ice;

Macfarlane et al., 2013) (Table 4).

Rafting is an important dispersal mechanism that

enables the transfer of organisms especially between

shore areas (Thiel & Gutow, 2004a, b), given the

erosion of benthic substrates together with their

123

Hydrobiologia (2020) 847:3519–3547 3531



resident organisms that mainly occurs in high-energy

waters. Rafts washed up on the shore may be colonized

by the benthic community and then drifted by water

flow. In low-energy and shallow shore environments,

substrate fragments that float up during the daytime

via photosynthetic processes may be relocated by

wind and then sink to the bottom at night, thereby

enabling at least a short-term dispersal (Phillips, 1958;

Faust & Gulledge, 1996). The sinking rate of nema-

todes rafting on marine snow was temporally lower

than of free-drifting nematodes but, which enabled

their longer persistence in the water column (Shanks &

Edmondson, 1990).

Ingolfsson (1995) and Abe et al. (2013) found

living nematodes on floating algae[ 100 km away

from the shoreline, indicative of long-range transport

across the ocean. Covered distances of hundreds of

kilometers have also been determined for other

organisms, including oligochaetes and plathelminths

(reviewed by Thiel & Gutow, 2004b). In addition to

wind and flow velocity, the durability of the floating

item can limit the covered distance. For example, sea

foam mediates a short dispersal as it quickly decays

(Armonies, 1989) whereas more durable items, such as

floating algae and especially driftwood, persist over

many years and favor longer dispersal distances (Thiel

& Gutow, 2004a).

Requirements for successful rafting

Studies on nematodes on floating items from coastal

waters showed their lower abundance and different

species composition compared to nematodes in the

substrate below (Hicks, 1988; Arroyo et al., 2006). For

example, Faust &Gulledge (1996) found that although

nematodes were the predominant taxon in the upper

sediment (* 2,740 individuals/l), only * 1% of that

population was present on floating detritus, where they

accounted for * 7% of the rafting metazoans, which

were dominated by crustacean larvae (* 87%). By

Table 4 Investigations of

marine and freshwater

environments in which

rafting nematodes were

found on different floating

items

Habitat Floating substratum References

Marine

Estuary Algae Phillips (1963)

Offshore waters[ 100 km Algae Abe et al. (2013)

Offshore waters 0.9–115 km Algae Ingolfsson (1995)

Microcosms Algae Arroyo et al. (2006)

Microcosms Algae Highsmith (1985)

Shallow embayment Algae Ólafsson et al. (2013)

Diff. habitats in the Sargasso Sea Algae Micoletzky (1922)

Shallow archipelagic waters Algae Norkko et al. (2000)

Oligohaline eulittoral zone Bacterial mats Vopel & Arlt (1995)

Bermuda Islands Coconut Gerlach (1977)

Mangrove embayment Detritus Faust & Gulledge (1996)

Intertidal mudflat Ice Macfarlane et al. (2013)

Pack-ice Ice Schünemann & Werner (2005)

Offshore waters 3 km Marine snow Shanks & Walters (1997)

Shallow bay Marine snow Shanks & Edmondson (1990)

Sheltered intertidal sandflat Seafoam Armonies (1989)

Tidal drainage channel Sediment Hicks (1988)

Freshwater

Pond Algae Phillips (1958)

Stream Bacterial biofilm Gaudes et al. (2006)

Cave waters Bacterial mats Riess et al. (1999); Muschiol et al.

(2015)

Mesocosm Periphyton mats Liston (2006); Liston et al.(2008)

Stream Water hyacinths Sazima & Zamprogno (1985)
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contrast, Gaudes et al. (2006) reported significantly

higher nematode densities on floating bacterial mats

(up to 752 individuals/cm2) than on attached mats.

Since in many cases only single individuals are

transported (Micoletzky, 1922; Abe et al., 2013), it

is likely that not all nematodes associate with the raft

or that some become lost during the voyage, resulting

in a sorting process for rafting species.

Thiel & Gutow (2004b) described the three features

that determine the rafting of organisms: (1) the ability

to cling to the potential raft, (2) successful survival on

the raft and (3) the establishment of persistent

populations during transport. For nematodes, their

caudal glands and the adhesion of their eggs allow

them to withstand the water flow and to remain on the

raft for long periods of time (Micoletzky, 1922). Biotic

rafts tend to host high densities of microfauna,

including bacteria, protozoans, diatoms, and other

algae, that constitute the basis of the rafting food web.

The review of Thiel & Gutow (2004b) also noted the

presence of predatory, grazing and detritivore organ-

isms on rafts, but suspension feeders able to optimally

exploit the renewable resources predominated.

Accordingly, studies on rafting nematode communi-

ties mostly identified bacteria- and algae-feeding

species (Micoletzky, 1922; Riess et al., 1999; Gaudes

et al., 2006; Muschiol et al., 2015). However, Mico-

letzky (1922) observed that the body sizes of nema-

todes on floating macroalgae were smaller than those

of related species in the sediment. The authors

attributed this finding to the limited food resources

during long-range dispersal. Furthermore, during their

voyage, rafting organisms are exposed to competition

and predation as well as rapidly changing environ-

mental parameters (e.g., flow velocity, temperature,

salinity, UV radiation) (Thiel & Gutow, 2004b).

Nonetheless, with their ability of parthenogenetic

reproduction, especially in freshwater environments,

nematodes are able to compensate for losses and

establish durable populations (Thiel &Gutow, 2004b).

In contrast to drifting organisms, the chance of

surviving long-range dispersal is higher for rafting

individuals and whole communities, especially if

structure-forming or engineering species colonize the

raft. Reproduction during transfer will result in more

individuals reaching a new habitat simultaneously,

thereby facilitating its colonization. Nematodes inves-

tigated in a microcosm study showed almost no

tendency to leave floating algae and recolonize the

underlying sediment, as also reported for other

organisms (Arroyo et al., 2006 and literature therein).

However, in that study, whether the algae had direct

contact with the sediment, thus enabling active

immigration, or colonization was possible only over

the water column was not resolved. Shanks &

Edmondson (1990) found that 94% of the vertical

nematode flux in a shallow bay was due to individuals

rafting on marine snow.

Animal dispersal vectors

Dispersal by larger animals consists of transfer on

those organisms (epizoochory) or within their diges-

tive tracts (endozoochory). In epizoochory, contact of

the animal with nematode-containing water, substrate

or other structures (e.g., plants) suffices to initiate

transfer. In general, the overland transport on/in

invertebrates and vertebrates is especially relevant

for the meiofauna of littoral zones, wetlands, mudflats

and other shallow waters, where direct contact with

the sediment is likely. The dispersal distance resulting

from zoochory depends on the range of the transport-

ing animal, which for birds can be * 1,000 km.

Processes that may limit epizoochory include dehy-

dration. In the case of endozoochory, success requires

the survival of ingestion (by direct predation or as

bycatch) and digestion whereas subsequent transfer

may be limited by the time required until digestion or

the next defecation.

Epizoochory

Frisch et al. (2007) suggested that the transport of

meiobenthic organisms on the feathers and feet of

birds is more decisive than endozoochory. While this

has been documented for benthic taxa such as

cladocerans, copepods and bryozoans (Green &

Figuerola, 2005 and literature therein), it may not be

the case for nematodes (Maguire, 1959). However, the

use of coarse-meshed sieves for organism collection

could have resulted in insufficient sampling and

therefore biased conclusions.

Nematodes can also be dispersed via their transport

in the fur of mammals. Vanschoenwinkel et al.

(2008c) identified nematodes, rotifers copepods,

ostracods, cladocerans, tardigrades and flatworms in

the fresh mud left behind by wild boars on the trees
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they had rubbed themselves against. However, that

study did not differentiate between living individuals

and eggs, and nematodes accounted for only a very

small percentage (1%) of the collected meiobenthic

organisms, which consisted mostly of microcrus-

taceans. Nematodes were the only taxon that did not

emerge from boar feces incubated in water, indicating

the complete digestion of living individuals and their

eggs. Meiobenthic organisms have also been detected

on the fur of nutrias (Waterkeyn et al., 2010a),

whereby the percentage of nematodes was\ 1% (five

nematodes collected from three nutrias). While mam-

mals of a large number of taxa can be assumed to

transport meiobenthic organisms, current evidence

suggests that fewer nematodes are transferred by

mammals than by birds.

Another mode of dispersal is via turtle shells, as the

backs of marine turtles are colonized by a diverse array

of micro-, meio-, and macrobenthic organisms, all of

which are associated with food webs and energy flows

(Corrêa et al., 2014; dos Santos et al., 2018; Ingels

et al., 2020). In contrast to all other dispersal modes

discussed herein, apart from rafting, turtle shells allow

the reproduction of the transferred organisms. Nema-

todes may reach densities on turtle shells of 21.6

individuals 10 cm-2 (1.08 m2 shell size) on average,

with up to 41 genera/species per shell, and were the

third most dominant taxon, behind ostracods and

copepods. Although the meiobenthic community on

turtle shells resembles that occurring in reef environ-

ments, turtle shells represent hotspots of nematode

diversity. Moreover, because millions of turtles, with

their standing stock of meiobenthic organisms, trav-

eling thousands of kilometers between foraging

grounds and nesting beaches (Luschi et al., 2003;

Ingels et al., 2020), they must be considered as one of

the most important epizoochoric dispersal vectors in

marine environments.

Given the success of this dispersal pathway, other

animals with outer shells or carapaces may also

disperse nematodes by epizoochory. For example,

Schejter et al. (2011) described nematodes associated

with ascidian colonies on the shells of gastropods.

Other epibiontic organisms, such as rotifers and

protozoans, have also been found on various crus-

taceans, including aquatic sow bugs, lobsters and the

crustaceans living on whales (Fernandez-Leborans &

Tato-Porto, 2000a, b; Fernandez-Leborans, 2001;

Cook et al., 2002).

Endozoochory

Intact nematodes ingested by insect larvae, juvenile

fish or crustaceans usually do not survive gut passage

but are instead quickly (20 min up to hours) digested

beyond recognition (Alheit & Scheibel, 1982; Hofsten

et al., 1983; Scholz et al., 1991; Muschiol et al., 2008;

Ptatscheck et al., 2015b; Weber & Traunspurger,

2017, 2015). However, this is not the case for all

nematode species. The free-living nematode Pana-

grellus redivivus survives in the gut of larval corego-

nids for a few hours and is able to pass through the

intestine, leaving by active movement (Schlechtriem

et al., 2005). Nematodes exiting the fish gut are

subsequently located in the open water, which enables

their further dispersal (water drift, rafting or swim-

ming). Similarly, unscathed gut passage has been

reported for numerous Rhabditida species ingested by

gastropods (Sudhaus, 2018), with the nematodes

surviving for up to 5 days until their excretion.

Gastropods exert strong top-down effects on the

meiofaunal communities of periphyton (Burgmer

et al., 2010; Schroeder et al., 2010; Peters & Traun-

spurger, 2012; Schroeder et al., 2013), which implies

the regular consumption and thus the endozoochory of

nematodes. Transport by fish larvae and gastropods

provides a larger dispersal radius for nematodes than

allowed by their own locomotion but not a dispersal

over long distances or between different waters, as

occurs with transport by birds. Gaston (1992) found up

to 2,300 nematodes and 5,000 copepods in the gut of

waterfowl (green-winged teal) that had fed for 20 min

on a mud flat. Overall, nematodes together with

ostracods and copepods represented up to 36% of the

ingested meiofauna, which was about the same

proportion as collected from 1 m2 of sediment from

the examined area. An analysis of waterfowl feces

revealed living adult nematodes but their occurrence

strongly varied between bird species (3–60%) and

their numbers increased after several days when the

feces were incubated in water (Green et al., 2008). The

latter observation leads to the conclusion that some

nematodes survived the passage as propagules, prob-

ably as eggs, as also suggested by the investigation of

Frisch et al. (2007). According to the results of Green

et al. (2008), the feces of one grey goose may

contain * 13 nematode individuals, but considering

that a flock of waterfowl at a particular site may

comprise several thousand individuals, the transfer of
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meiobenthic organisms by endozoochory may well be

substantial. Additionally, this study also showed that

the eggs of crustaceans are found much more

frequently and in greater numbers in the feces of

waterfowl than nematodes.

In addition to primary zoochory, secondary zoo-

chory via the seeds and invertebrates (e.g., daphnia)

ingested by fish and dispersed by piscivorous birds

such as cormorants has been described (van Leeuwen

et al., 2017). However, this pathway has not yet been

demonstrated for nematodes or other typically

meiobenthic organisms.

Hessen et al. (2019) concluded that the only

conceivable vector for the long-distance endozoo-

chory of pelagic microcrustaceans is waterfowl, which

can cover distances of hundreds of kilometers.

Nonetheless, the authors also noted that this dispersal

pathway is less likely because of the different feeding

grounds (the birds forage in terrestrial or coastal

habitats) and the fast gut turnover of these birds, but

dispersal over short distances was likely to be

common.

Gone with the wind

An omnipresent vector for the overland dispersal of

unicellular organisms (e.g., bacteria, algae) and

microscopic metazoans (e.g., nematodes, microcrus-

taceans, flatworms, acari, rotifers) is wind (Frankland,

1886; Vanschoenwinkel et al., 2008b). Wind erosion

primarily affects terrestrial organisms, while inhabi-

tants of benthic habitats are exposed to wind mostly in

eulittoral zones, floodplains, desiccated substrates and

thus especially in temporal waters and semiaquatic

habitats (e.g., ponds or phytotelmata).

In contrast to other benthic organisms or zooplank-

ton, there is little consistent information on the wind

drift of nematodes, especially regarding the resultant

dispersal rates (individuals collected at a certain time

in a certain area). Furthermore, many of the studies did

not identify nematodes to the genus/species level,

which complicates determination of their source and

favored habitat. To the best of our knowledge, only

Ptatscheck et al. (2018) examined nematodes from

aquatic habitats drifted by wind. Among the 27 wind-

dispersed nematode species that were collected, only 1

preferentially colonized aquatic environments

whereas at least 9 were known from both terrestrial

and aquatic or semiaquatic habitats. The most com-

mon species were typically terrestrial, consistent with

the results of other studies (Baujard & Martiny, 1994;

Nkem et al., 2006).

While in the study of Vanschoenwinkel et al.

(2008a) nematodes accounted for * 1% of the aero-

plankton (* 94% crustaceans), in the study of

Ptatscheck et al. (2018) nematodes comprised * 46%

of the sampled animals (crustaceans were not found)

and their dispersal rate within 4 weeks was as high as

3,020 individuals/m2 in a study conducted in central

Europe. Other investigations of different locations

reported much lower rates of\ 5 individuals/m2

within 1 year (Nkem et al., 2006: in Antarctica) and

14 individuals/m2 within 1 month (Vanschoenwinkel

et al., 2008a: South Africa during the dry season). An

important reason for the large differences in these

results is the fundamentally different methods that

were used. Thus, while Ptatscheck et al. (2018)

collected the organisms using formaldehyde-filled

funnels and 5-lm mesh-size filters, Vanschoenwinkel

et al. (2008a) collected aeroplankton in windsocks

(100 lm) and Nkem et al. (2006) analyzed soil

samples as well as the contents of open-top chambers

and Bundt pan soil traps. Difficulties in comparing the

results of studies on wind-drifted organisms were

noted by Vanschoenwinkel et al. (2009).

Not all organisms are dispersed equally, with clear

limitations as well as different sorting processes

described for wind-drifted nematodes, rotifers, clado-

cerans, copepods and tardigrades (Jenkins, 1995;

Cáceres & Soluk, 2002; Ptatscheck et al., 2018). In

the case of nematodes, their form and weight deter-

mine the wind energy necessary for their erosion and

the transfer range. For example, resting eggs are less

effectively transported by wind than are later stages

(Cáceres & Soluk, 2002). Nkem et al. (2006) and

Ptatscheck et al. (2018) showed that aerial plankton

mainly contains small individuals (\ 0.75 mm) and

juvenile nematodes with low body weights. Further-

more, anhydrobiosis and the associated weight reduc-

tion through water loss enable a more effective wind

transfer than possible for hydrated forms (van Gundy,

1965). It is often assumed that the presence of

propagules, which are not known from aquatic nema-

todes, is a prerequisite for the successful wind drift of

microscopic aquatic organisms (Panov et al., 2004;

Nkem et al., 2006; Incagnone et al., 2015). However,

Ptatscheck et al. (2018) found only living stages in
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their collection of wind-drifted organisms and thus

argued that the climatic conditions are a crucial

determinant of wind drift and that propagules are a

feature only of harsher environments.

Additional parameters affecting the wind dispersal

of nematodes are wind speed and humidity. More

nematodes were collected from the air during periods

of higher wind speed (Ptatscheck et al., 2018),

suggesting a stronger erosion effect and longer

transport distances. The same study showed that

dispersal was enhanced by higher humidity, although

it is usually assumed that small organisms are mainly

dispersed during dry periods because dry surfaces

facilitate erosion (Incagnone et al., 2015). Thus, the

wind dispersal of nematodes and other microscopic

organisms is likely to be strongly seasonal (Ptatscheck

et al., 2018).

The distances covered by the aeroplankton range

from a few meters (Jenkins & Underwood, 1998;

Vanschoenwinkel et al., 2008a, 2009), to several

hundred meters (Maguire, 1963) and up to several

dozen kilometers (Carroll & Viglierchio, 1981). With

increasing distance, the number of wind-dispersed

nematodes declines (Ptatscheck et al., 2018). How-

ever, wind-drifted nematodes can be collected at least

35 m above the ground, such that transport on a larger

scale is plausible (Ptatscheck et al., 2018). While little

is known about the colonization success of wind-

drifted nematodes, it can be assumed that overland

dispersal is an important mode of transport for isolated

habitats such as tank bromeliads. Studies on the

colonization of azoic sediments in streams by aerially

transported organisms revealed that, in contrast to

other benthic invertebrates such as ostracods or

copepods, there was no evidence of the establishment

of nematode communities (Williams & Hynes, 1976;

Williams, 1977; Benzie, 1984).

Human-mediated transfer

Wyatt & Carlton (2002) pointed out that in discussions

of the global distributions of microscopic organisms

such as nematodes, not only natural processes but also

anthropogenic vectors must be considered, because

they are also effective and well documented. In fact,

since contact between larger organisms and the

sediment often leads to the displacement of meio-

fauna, nematodes are likely to be common ‘‘travel

companions’’ including of humans. Both Waterkeyn

et al. (2010b) and Valls et al. (2016) showed that

nematodes can be transferred in the mud residue of

clothes (here, footwear). Because aquatic nematodes

(probably their eggs) in dried sediment are highly

viable (Gerlach, 1977), human-mediated transfer is

likely to be an important mechanism leading to the

dispersal of organisms across different wetland habi-

tats, especially those in highly frequented areas but

also sites separated by long distances.

Ships transit lakes, river systems and oceans and

with the emptying of their ballast tanks they contribute

to the global dispersal of numerous, sometimes

invasive, species. Nematodes are the predominant

andmost diverse meiobenthic taxon collected from the

sediments of ballast tanks (Duggan et al., 2005, 2006;

Radziejewska et al., 2006). Duggan et al. (2005)

identified 48 different freshwater nematode taxa in the

tanks of several ships traveling the Great Lakes, which

border parts of the USA and Canada. The results of

Radziejewska et al. (2006) suggested the transport

of[ 100,000 nematodes (66% of the collected meio-

fauna) within the sediment contained in the ballast

tank of a bulk carrier. Moreover, depending on the

location of sediment uptake, nematode abundance in

transported sediments may be even higher.

Finally, even tap water enables the dispersal of

nematodes, as these and other meiobenthic organisms

(e.g., rotifers, oligochaetes, gastrotrichs, flatworms,

microcrustaceans) are present in drinking water dis-

tribution systems (Funch et al., 1995; Schreiber et al.,

1997; Christensen, 2011; Inkinen et al., 2019). In fact,

guideline values for finished water from the Nether-

lands (in 1993) and North America include the

allowance of 0.3 and 2.5 nematodes/l (reviewed by

Christensen, 2011). Other studies found up to 156

individuals, belonging to 41 species/l drinking water

(reviewed by Artois et al., 2011).

What is left to say?

The ability to get everywhere

The picture that emerges from this review is that the

dispersal pathways of marine and freshwater nema-

todes are as diverse as the habitats they inhabit, and

they include both water but also overland routes

(Fig. 1). While active locomotion, whether by
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sediment crawling or by swimming in open waters,

enables nematodes to spread over centimeter and

meter ranges, passive modes are essential for longer-

range dispersals from freshwater and marine environ-

ments. Under favorable conditions nematodes can

disperse by drift, rafting and zoochory but also as

stowaway on ships to reach opposite shores, cross the

(dry) ocean and cover distances[ 10,000 km. Since

the survival rate (e.g., the avoidance of death by

starvation, digestion) and recruitment from source

habitats decline with increasing time and distance,

most distribution probably takes place over smaller

ranges, in line with the results of studies based on

genetic approaches (Derycke et al., 2007; Bik et al.,

2010; Derycke et al., 2013; Hauquier et al., 2017).

However, according to the review of Cerca et al.

(2018), the presented studies suggests that the meio-

fauna paradox most likely does not exist because the

dispersal of these small organisms is more diverse and

effective than often assumed, but not entirely unre-

stricted (see next section). Finally, although the basic

distribution pathways of nematodes have already been

demonstrated, the picture is far from complete. For

example, the entire spectrum of larger organisms (e.g.,

crustaceans or even whales) that may transport

nematodes by primary or secondary zoochory has

yet to be examined in depth and thus offers a wide field

for further studies. In addition, most of the studies

cited in our review addressed the dispersal of nema-

todes in marine environments whereas studies from

freshwater ecosystems are underrepresented. Indeed,

processes that have primarily been described in marine

environments, such as rafting, presumably also occur

in lakes or streams, but very few studies have

examined the importance of water drift for the

dispersal of nematodes in lakes (e.g., littoral vs.

profundal).

Limitations of dispersal

This review explored the dispersal modes of nema-

todes and included comparisons with studies on other

meiofaunal organisms to assess the extent of these

processes in various environments. However, because

microcrustaceans (mainly copepods) and other meio-

fauna have already been extensively examined in this

context, a consideration of all existing studies would

have been far beyond the scope of this review, which is

why we focused on single examples. The authors of

previous studies on the dispersal of marine nematodes

(e.g., Palmer, 1988a; Armonies, 1994) concluded that

dispersal is primarily passive, with active locomotion

playing a more important role in copepods. Our review

also shows that nematodes can actively move in water

or sediment but as crawlers and swimmers they are

less effective than other meiofaunal organisms, in

addition to being vulnerable to even low flow veloc-

ities of water. While epibenthic organisms such as

microcrustaceans or plathelminths immigrate to the

water column by active movement, this is the case for

only a small percentage of endobenthic nematodes,

whose presence in the water column is instead largely

due to erosion. Indeed, our review also provides

considerable evidence of the limitation of nematode

dispersal (Fig. 1) due to (1) organismal morphology,

(2) ecological factors, (3) habitat structure and (4)

hydrodynamics, which together result in the sorting of

species, size classes and feeding types. Morphological

characteristics such as body shape determine how fast

and how far a nematode can disperse on its own in any

direction. This active dispersal is usually triggered by

several fundamental ecological factors that act in

concert and also determine local population dynamics

(Bowler & Benton, 2005; Matthysen, 2012). For

nematodes, these factors include the availability of

food resources but also predation, competition, oxy-

gen level and the amount of disturbance. Overland

dispersal, which relies on wind and the mobility of

larger organisms, is mainly restricted to species of

shallow and ephemeral waters as well as littoral zones.

In habitats characterized by a high flow velocity, such

as streams or shore areas subject to wind, waves and

tides, the number of drifting or rafting nematodes

originating from the upper substrate layers increases,

although additional factors, such as the vertical

distribution and habitat structure of the organisms,

also play important roles.

If their dispersal is by no means unrestricted, then

why are nematodes so successful in entering new

habitats? A crucial advantage is the high densities in

which nematodes occur. Even if only a small percent-

age of the nematodes emigrate from the sediment, it is

enough to allow a continuous spread of numerous

individuals, especially since only a few gravid females

can sustain a population. For example, Palmer (1992)

showed that 24 h of nematode immigration by open

water dispersal can result in the settling of a larger

number of individuals than previously located in the
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home substrate. Further reasons may be found in the

subsequent establishment processes described by

immigration, which were not considered in this review

and have so far hardly been investigated for nematodes

in general.

A quick glance at colonization

Studies that investigated the succession of empty

habitats (Table 2) have shown that colonization by

nematodes starts immediately, with densities compa-

rable to those of the surrounding habitats reached

within a few days. However, for successful dispersal

not only the arrival of organisms but also their ability

to prevail in the new habitat is crucial. In the case of

passive distribution, organisms can reach locations

that differ completely in their biotic and abiotic

parameters from the source habitat, such that a high

degree of adaptability is necessary for survival and

reproduction. According to Bongers & Bongers

(1998), nematodes with fast reproduction rates, the

ability of parthenogenesis and a tolerance of unfavor-

able environmental conditions will be successful

colonizers. Bacterial (Monhysteridae, Plectidae) and

hyphal (Aphelenchoidae) feeding taxa were identified

as pioneer organisms in streams, lakes (Duft et al.,

2002; Peters et al., 2007; Weber & Traunspurger,

2016) and ephemeral waters (Ptatscheck & Traun-

spurger, 2014; Ptatscheck et al., 2015a), indicative of

the important role of food availability during the

establishment of nematode communities. Predatory

nematodes often occur in higher abundances in more

nutritious environments (Michiels & Traunspurger,

2005b; Schroeder et al., 2012; Kazemi-Dinan et al.,

2014; Ptatscheck & Traunspurger, 2014) and therefore

tend to appear during later phases of colonization.

Accordingly, in their study of colonization using

artificial tree-holes Ptatscheck & Traunspurger (2014)

detected predatory nematode species solely in the

treatments with added leaf litter, while Peters et al.

(2007) described an increase in species number from 1

to 4 nematode species on artificial hard substrates

during the first 10 days of colonization. Not only the

availability of food resources but also their exploita-

tion by different nematode species influences the

population growth rate and the possibility of becoming

established in a habitat, as shown by Ilieva-Makulec

(2001) and Gansfort et al. (2018). Furthermore, top-

down effects caused by predators or bioturbators can

also significantly shape the nematode community

(e.g., Weber & Traunspurger, 2016). These examples

show that the sequence in which species immigrate to

a habitat and the resulting priority effects, in the form

of biological interactions with already established

communities (e.g., Incagnone et al., 2015), contribute

to defining nematode community structure (Derycke

et al., 2013). However, much remains to be learned

about the establishment processes of nematodes, as

there is still a lack of studies on the succession of new

habitats that consider nematodes at the species level.

Further approaches

The studies presented in our review describe the

emigration and transport of nematodes and the differ-

ent spatial levels at which the spread of these

organisms occurs. While the short distances covered

by active movement can be adequately investigated in

laboratory tests, accurately tracing the long-range

transfer of nematodes is much more difficult. The

migration routes of larger transporting animals (e.g.,

birds) can be tracked, water flow or wind direction can

be taken into account, the effect of hydrodynamics on

small organisms in the water column can be calculated

and the next possible neighboring populations can be

localized. However, none of these approaches has thus

far led to a clear understanding of the spread of

nematodes and other small organisms. For example,

the extent to which nematodes within a river network

are connected through dispersal is not known. Study-

ing the genetic diversity of certain nematode species

(e.g., Derycke et al., 2013; Ristau et al., 2013; Schenk

et al., 2016) can provide insights into the gene flow

between species at different locations and thus the

extent and range of their dispersal. Furthermore,

‘‘sophisticated experimental experiments’’ are another

key for the detailed understanding of meiofauna

dispersal processes (Cerca et al., 2018).

Conclusion

The dispersal modes of nematodes have been inves-

tigated in the laboratory and in the field. In some of

those studies, collections of nematodes obtained

during the transfer phase (e.g., in the water column

or on larger organisms) were assessed with respect to a

single dispersal mode. In others, the ability of
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nematodes to colonize disturbed or azoic substrates

was the focus. Taken together, the results provide

further evidence that nematodes are well-equipped

pioneer organisms and often one of the first metazoans

to establish populations at new, disturbed or even

isolated habitats. However, less is known about the

importance of long-range dispersal modes, such as

zoochory or transport in ship water tanks, for local

population structures and even less about the impact of

immigrating nematodes on existing or emerging

communities. Both translocation and subsequent set-

tlement processes must be taken into account to

answer the question whether, for nematodes, getting

everywhere means staying everywhere and thus

whether nematodes are successful dispersers.
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