8 research outputs found

    Silencing Myostatin Using Cholesterol-conjugated siRNAs Induces Muscle Growth

    No full text
    Short interfering RNAs (siRNAs) are a valuable tool for gene silencing with applications in both target validation and therapeutics. Many advances have recently been made to improve potency and specificity, and reduce toxicity and immunostimulation. However, siRNA delivery to a variety of tissues remains an obstacle for this technology. To date, siRNA delivery to muscle has only been achieved by local administration or by methods with limited potential use in the clinic. We report systemic delivery of a highly chemically modified cholesterol-conjugated siRNA targeting muscle-specific gene myostatin (Mstn) to a full range of muscles in mice. Following a single intravenous injection, we observe 85–95% knockdown of Mstn mRNA in skeletal muscle and >65% reduction in circulating Mstn protein sustained for >21 days. This level of Mstn knockdown is also accompanied by a functional effect on skeletal muscle, with animals showing an increase in muscle mass, size, and strength. The cholesterol-conjugated siRNA platform described here could have major implications for treatment of a variety of muscle disorders, including muscular atrophic diseases, muscular dystrophy, and type II diabetes

    Proof-of-concept Studies for siRNA-mediated Gene Silencing for Coagulation Factors in Rat and Rabbit

    No full text
    The present study aimed at establishing feasibility of delivering short interfering RNA (siRNA) to target the coagulation cascade in rat and rabbit, two commonly used species for studying thrombosis and hemostasis. siRNAs that produced over 90% mRNA knockdown of rat plasma prekallikrein and rabbit Factor X (FX) were identified from in vitro screens. An ionizable amino lipid based lipid nanoparticle (LNP) formulation for siRNA in vivo delivery was characterized as tolerable and exerting no appreciable effect on coagulability at day 7 postdosing in both species. Both prekallikrein siRNA-LNP and FX siRNA-LNP resulted in dose-dependent and selective knockdown of target gene mRNA in the liver with maximum reduction of over 90% on day 7 following a single dose of siRNA-LNP. Knockdown of plasma prekallikrein was associated with modest clot weight reduction in the rat arteriovenous shunt thrombosis model and no increase in the cuticle bleeding time. Knockdown of FX in the rabbit was accompanied with prolongation in ex vivo clotting times. Results fit the expectations with both targets and demonstrate for the first time, the feasibility of targeting coagulation factors in rat, and, more broadly, targeting a gene of interest in rabbit, via systemic delivery of ionizable LNP formulated siRNA

    siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids[S]

    No full text
    Increased serum apolipoprotein (apo)B and associated LDL levels are well-correlated with an increased risk of coronary disease. ApoE–/– and low density lipoprotein receptor (LDLr)–/– mice have been extensively used for studies of coronary atherosclerosis. These animals show atherosclerotic lesions similar to those in humans, but their serum lipids are low in apoB-containing LDL particles. We describe the development of a new mouse model with a human-like lipid profile. Ldlr CETP+/– hemizygous mice carry a single copy of the human CETP transgene and a single copy of a LDL receptor mutation. To evaluate the apoB pathways in this mouse model, we used novel short-interfering RNAs (siRNA) formulated in lipid nanoparticles (LNP). ApoB siRNAs induced up to 95% reduction of liver ApoB mRNA and serum apoB protein, and a significant lowering of serum LDL in Ldlr CETP+/– mice. ApoB targeting is specific and dose-dependent, and it shows lipid-lowering effects for over three weeks. Although specific triglycerides (TG) were affected by ApoB mRNA knockdown (KD) and the total plasma lipid levels were decreased by 70%, the overall lipid distribution did not change. Results presented here demonstrate a new mouse model for investigating additional targets within the ApoB pathways using the siRNA modality

    A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing

    No full text
    Summary: The development of clinically viable delivery methods presents one of the greatest challenges in the therapeutic application of CRISPR/Cas9 mediated genome editing. Here, we report the development of a lipid nanoparticle (LNP)-mediated delivery system that, with a single administration, enabled significant editing of the mouse transthyretin (Ttr) gene in the liver, with a >97% reduction in serum protein levels that persisted for at least 12 months. These results were achieved with an LNP delivery system that was biodegradable and well tolerated. The LNP delivery system was combined with a sgRNA having a chemical modification pattern that was important for high levels of in vivo activity. The formulation was similarly effective in a rat model. Our work demonstrates that this LNP system can deliver CRISPR/Cas9 components to achieve clinically relevant levels of in vivo genome editing with a concomitant reduction of TTR serum protein, highlighting the potential of this system as an effective genome editing platform. : Finn et al. describe the development of a transient, biodegradable LNP-based CRISPR/Cas9 delivery system that achieves >97% knockdown of serum TTR levels following a single administration. Editing levels were stable for 12 months, despite the transient nature of the delivery system and the editing components. Keywords: CRISPR, Cas9, genome editing, LNP, lipid nanoparticle, TTR, CRISPR/Cas9, liver delivery, gene therapy, sgRN
    corecore