360 research outputs found

    Dopamine transporter and transmission of psychopathological risk. A review of gene-environment interplay

    Get PDF
    Research underlines that intergenerational transmission of psychopathological risk results from a complex interplay of genetic and environmental risk factors which predispose child to develop emotionalbehavioral problems. Mechanisms of transmission are poorly understood, but few studies have focused on the role played by dopamine transporter (DAT) gene. This review aims to examine mediating mechanism of DAT genotype-environmental interaction (GxE), DAT genotype-environmental correlation (rGE), and methylation status involved in transmission of psychopathological risk. The review of literature was made through researches in university libraries on paper material, and telematics systems research. Studies have evidenced that DAT is implicated in intergenerational transmission of psychopathological risk. Results are mixed regarding its genetic variants, but mechanisms through which this gene can affect both quality of parenting and child development are partially established. Only few studies have examined methylation mechanisms that can be implicated. Findings suggest to involve an improved focus on DAT genotypes, methylation status associated, and their relationship with environment to better understanding child’s vulnerability and resilience following exposure to contextual risk factors associated with parental psychopathological symptoms

    DNA methylation at the DAT promoter and risk for psychopathology. Intergenerational transmission between school-age youths and their parents in a community sample

    Get PDF
    Background: The effect of gene polymorphisms and promoter methylation, associated with maladaptive developmental outcomes, vary depending on environmental factors (e.g., parental psychopathology). Most studies have focused on 0- to 5-year-old children, adolescents, or adults, whereas there is dearth of research on school-age youths and pre-adolescents. Methods: In a sample of 21 families recruited at schools, we addressed parents' psychopathological symptoms (through SCL-90-R); offspring emotional-behavioral functioning (through CBCL-6-18); dopamine transporter gene (DAT1) for epigenetic status of the 5'-untranslated region (UTR) and for genotype, i.e., variable number of tandem repeats polymorphism at the 3'-UTR. Possible associations were explored between bio-genetic and psychological characteristics within the same individual and between triplets of children, mothers, and fathers. Results: DAT methylation of CpG at positions M1, M6, and M7 in mothers was correlated with maternal (phobic) anxiety, whereas in fathers' position M6 was related to paternal depression, anxiety, hostility, psychoticism, and higher Global Severity Index (GSI). No significant correlations were found between maternal and offspring DAT methylation. Significant correlations were found between fathers' methylation at CpG M1 and children's methylation at CpG M6. Linear regressions showed that mothers and fathers' GSI predicted children's methylation at CpG sites M2, M3, and M6, whereas fathers' GSI predicted children's methylation at CpG sites, particularly M1, M2, and M6. Moreover, offspring methylation of DAT at CpG M2 predicted somatic complaint, internalizing and attention problems; methylation of DAT at CpG M6 predicted withdraw. Conclusion: This study may have important clinical implication for the prevention and treatment of emotional-behavioral difficulties in children, as it adds to previous knowledge about the role of genetic and environmental factors in predicting psychopathological symptoms within non-clinical population

    Characterisation of the Vitis vinifera PR10 multigene family

    Get PDF
    Background: Genes belonging to the pathogenesis related 10 (PR10) group have been studied in several plant species, where they form multigene families. Until now, such an analysis has not been performed in Vitis vinifera, although three different PR10 genes were found to be expressed under pathogen attack or abiotic stress, and during somatic embryogenesis induction. We used the complete genome sequence for characterising the whole V. vinifera PR10 gene family. The expression of candidate genes was studied in various non-treated tissues and following somatic embryogenesis induction by the auxin 2,4-D. Results: In addition to the three V. vinifera PR10 genes already described, namely VvPR10.1, VvPR10.2 and VvPR10.3, fourteen different PR10 related sequences were identified. Showing high similarity, they form a single cluster on the chromosome 5 comprising three pseudogenes. The expression of nine different genes was detected in various tissues. Although differentially expressed in non-treated plant organs, several genes were up-regulated in tissues treated with 2,4-D, as expected for PR genes. Conclusions: PR10 genes form a multigene family in V. vinifera, as found in birch, apple or peach. Seventeen closely related PR10 sequences are arranged in a tandem array on the chromosome 5, probably reflecting small-scale duplications during evolution. Various expression patterns were found for nine studied genes, highlighting functional diversification. A phylogenetic comparison of deduced proteins with PR10 proteins of other plants showed a characteristic low intraspecific variability. Particularly, a group of seven close tandem duplicates including VvPR10.1, VvPR10.2 and VvPR10.3 showed a very high similarity, suggesting concerted evolution or/and recent duplications

    Causes and Solutions for High Direct Care Staff Turnover

    Get PDF
    This quantitative research project explores the reasons and solutions for the high rates of direct care staff turnover. Emails were sent out to social service agency supervisors asking for their approval to allow their employees to participate in an online survey about direct care staff turnover. Agencies that agreed to participate were then emailed a script and a consent form with instructions to email both the script and the consent form to their employees. The ten question online survey explored the direct care staff\u27s opinions on topics such as compensation, support and training. Additionally, there was a qualitative question at the end of the survey asking for direct care staff\u27s input as to possible solutions to reduce direct care staff turnover. Twenty-six individuals participated in the survey. Answers were analyzed and entered into SPSS in order to find correlations in the data. Themes were identified amongst the responses to the qualitative question. A majority of the respondents did not feel they received adequate support from their supervisor or adequate compensation for the work that they do. Answers showed that direct care staff who participated in the survey attributed inadequate compensation as the largest contributor to the high rates of direct care staff turnover. The answers revealed no statistically significant data however, some correlations approached statistical significance. Results from this quantitative research project were consistent with pre-existing literature

    Cross-correlations between motifs in the 5′-UTR of DAT1 gene. Findings from Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is a neuro-degenerative disorder affecting the striatal motor system, caused by the loss of neuronal cells in the mid-brain, where reduced amounts of dopamine do cause involuntary movements and others symptoms. Alterations of methylome have been reported in PD epigenomic studies, and also human dopamine transporter gene (DAT1, SLC6A3) is considered as a candidate risk factor for PD. Since the DNA methylation on DAT promoter may well have a role in the development of this disease, we aimed to further assess the epigenetic control, by focusing on specific CpG sites located in the 5′ -untranslated region (5′ -UTR) of the DAT1 gene. Significant changes in DAT 5′ -UTR methylation were already found in peripheral blood mononuclear cells (PBMCs) of PD subjects (Rubino et al., 2020). Of note, methylation values at the CpG 5 were increased. We run on same data a novel statistical approach: crosscorrelation between pairs of loci. CpG 5 was the only always-differing variable but, alternatively, CpGs 2 and 6 or CpGs 1 and 3 were also significantly correlated with CpG 5. Interestingly, this picture emerged for those patients whose M2xM6 index was above-median; loci were rather independent for below-median patients. Present data may shed light into dynamics occurring at 5′ -UTR of DAT1, a gene involved in PD but also in many psycho-physiological pathologies

    Genetic chimerism of Vitis vinifera cv. Chardonnay 96 is maintained through organogenesis but not somatic embryogenesis

    Get PDF
    BACKGROUND: Grapevine can be a periclinal chimera plant which is composed at least of two distinct cell layers (L1, L2). When the cell layers of this plant are separated by passage through somatic embryogenesis, regenerated plants could show distinct DNA profiles and a novel phenotype which proved different from that of the parent plant. RESULTS: Genetically Chardonnay clone 96 is a periclinal chimera plant in which is L1 and L2 cell layers are distinct. Plants obtained via organogenesis through meristematic bulks are shown to be composed of both cell layers. However, plants regenerated through somatic embryogenesis starting from anthers or nodal explants are composed only of L1 cells. These somaclones do not show phenotypic differences to the parental clone up to three years after regeneration. Interestingly, the only somaclone showing an atypical phenotype (asymmetric leave) shows a genotypic modification. CONCLUSION: These results suggest that the phenotype of Chardonnay 96 does not result from an interaction between the two distinct cell layers L1 and L2. If phenotype conformity is further confirmed, somatic embryogenesis will result in true-to-type somaclones of Chardonnay 96 and would be well suitable for gene transfer

    Similar temperature dependencies of glycolytic enzymes: an evolutionary adaptation to temperature dynamics?

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in Saccharomyces cerevisiae during temperature changes. RESULTS: Saccharomyces cerevisiae was grown under different temperature regimes and glucose availability conditions. These included glucose-excess batch cultures at different temperatures and glucose-limited chemostat cultures, subjected to fast linear temperature shifts and circadian sinoidal temperature cycles. An observed temperature-independent relation between intracellular levels of glycolytic metabolites and residual glucose concentration for all experimental conditions revealed that it is the substrate availability rather than temperature that determines intracellular metabolite profiles. This observation corresponded with predictions generated in silico with a kinetic model of yeast glycolysis, when the catalytic capacities of all glycolytic enzymes were set to share the same normalized temperature dependency. CONCLUSIONS: From an evolutionary perspective, such similar temperature dependencies allow cells to adapt more rapidly to temperature changes, because they result in minimal perturbations of intracellular metabolite levels, thus circumventing the need for extensive modification of enzyme levels

    Herschel Far-Infrared and Sub-millimeter Photometry for the KINGFISH Sample of Nearby Galaxies

    Get PDF
    New far-infrared and sub-millimeter photometry from the Herschel Space Observatory is presented for 61 nearby galaxies from the Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel (KINGFISH) sample. The spatially-integrated fluxes are largely consistent with expectations based on Spitzer far-infrared photometry and extrapolations to longer wavelengths using popular dust emission models. Dwarf irregular galaxies are notable exceptions, as already noted by other authors, as their 500um emission shows evidence for a sub-millimeter excess. In addition, the fraction of dust heating attributed to intense radiation fields associated with photo-dissociation regions is found to be (21+/-4)% larger when Herschel data are included in the analysis. Dust masses obtained from the dust emission models of Draine & Li are found to be on average nearly a factor of two higher than those based on single-temperature modified blackbodies, as single blackbody curves do not capture the full range of dust temperatures inherent to any galaxy. The discrepancy is largest for galaxies exhibiting the coolest far-infrared colors.Comment: Accepted for publication in Ap

    Elastin haploinsufficiency induces alternative aging processes in the aorta

    Get PDF
    Elastin, the main component of elastic fibers, is synthesized only in early life and provides the blood vessels with their elastic properties. With aging, elastin is progressively degraded, leading to arterial enlargement, stiffening, and dysfunction. Also, elastin is a key regulator of vascular smooth muscle cell proliferation and migration during development since heterozygous mutations in its gene (Eln) are responsible for a severe obstructive vascular disease, supravalvular aortic stenosis, isolated or associated to Williams syndrome. Here, we have studied whether early elastin synthesis could also influence the aging processes, by comparing the structure and function of ascending aorta from 6- and 24-month-old Eln+/- and Eln+/+ mice. Eln+/- animals have high blood pressure and arteries with smaller diameters and more rigid walls containing additional although thinner elastic lamellas. Nevertheless, longevity of these animals is unaffected. In young adult Eln+/- mice, some features resemble vascular aging of wild-type animals: cardiac hypertrophy, loss of elasticity of the arterial wall through enhanced fragmentation of the elastic fibers, and extracellular matrix accumulation in the aortic wall, in particular in the intima. In Eln+/- animals, we also observed an age-dependent alteration of endothelial vasorelaxant function. On the contrary, Eln+/- mice were protected from several classical consequences of aging visible in aged Eln+/+ mice, such as arterial wall thickening and alteration of alpha(1)-adrenoceptor-mediated vasoconstriction. Our results suggest that early elastin expression and organization modify arterial aging through their impact on both vascular cell physiology and structure and mechanics of blood vessels
    corecore