2,576 research outputs found

    Toll-like receptor signaling and stages of addiction

    Get PDF
    Athina Markou and her colleagues discovered persistent changes in adult behavior following adolescent exposure to ethanol or nicotine consistent with increased risk for developing addiction. Building on Dr. Markou's important work and that of others in the field, researchers at the Bowles Center for Alcohol Studies have found that persistent changes in behavior following adolescent stress or alcohol exposure may be linked to induction of immune signaling in brain. This study aims to illuminate the critical interrelationship of the innate immune system (e.g., toll-like receptors [TLRs], high-mobility group box 1 [HMGB1]) in the neurobiology of addiction. This study reviews the relevant research regarding the relationship between the innate immune system and addiction. Emerging evidence indicates that TLRs in brain, particularly those on microglia, respond to endogenous innate immune agonists such as HMGB1 and microRNAs (miRNAs). Multiple TLRs, HMGB1, and miRNAs are induced in the brain by stress, alcohol, and other drugs of abuse and are increased in the postmortem human alcoholic brain. Enhanced TLR-innate immune signaling in brain leads to epigenetic modifications, alterations in synaptic plasticity, and loss of neuronal cell populations, which contribute to cognitive and emotive dysfunctions. Addiction involves progressive stages of drug binges and intoxication, withdrawal-negative affect, and ultimately compulsive drug use and abuse. Toll-like receptor signaling within cortical-limbic circuits is modified by alcohol and stress in a manner consistent with promoting progression through the stages of addiction

    Adolescent intermittent ethanol reduces serotonin expression in the adult raphe nucleus and upregulates innate immune expression that is prevented by exercise

    Get PDF
    Serotonergic neurons of the raphe nucleus regulate sleep, mood, endocrine function, and other processes that mature during adolescence. Alcohol abuse and binge drinking are common during human adolescence. We tested the novel hypothesis that adolescent intermittent ethanol exposure would alter the serotonergic system that would persist into adulthood. Using a Wistar rat model of adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P]25 to P55), we found a loss of dorsal raphe nucleus (DRN) serotonin (5-HT)-immunoreactive (+IR) neurons that persisted from late adolescence (P56) into adulthood (P220). Hypothalamic and amygdalar DRN serotonergic projections were reduced following AIE. Tryptophan hydroxylase 2, the rate-limiting 5-HT synthesizing enzyme, and vesicular monoamine transporter 2, which packages 5-HT into synaptic vesicles, were also reduced in the young adult midbrain following AIE treatment. Adolescent intermittent ethanol treatment increased expression of phosphorylated (activated) NF-κB p65 as well as markers of microglial activation (i.e., Iba-1 and CD11b) in the adult DRN. Administration of lipopolysaccharide to mimic AIE-induced innate immune activation reduced 5-HT+IR and increased phosphorylated NF-κB p65+IR similar to AIE treatment. Voluntary exercise during adolescence through young adulthood blunted microglial marker and phosphorylated NF-κB p65+IR, and prevented the AIE-induced loss of 5-HT+IR neurons in the DRN. Together, these novel data reveal that AIE reduces 5-HT+IR neurons in the adult DRN, possibly through an innate immune mechanism, which might impact adult cognition, arousal, or reward sensitivity. Further, exercise prevents the deleterious effects of AIE on the serotonergic system

    Alcohol and Stress Activation of Microglia and Neurons: Brain Regional Effects

    Get PDF
    BACKGROUND: Cycles of alcohol and stress are hypothesized to contribute to alcohol use disorders. How this occurs is poorly understood, although both alcohol and stress activate the neuroimmune system-the immune molecules and cells that interact with the nervous system. The effects of alcohol and stress on the neuroimmune system are mediated in part by peripheral signaling molecules. Alcohol and stress both enhance immunomodulatory molecules such as corticosterone and endotoxin to impact neuroimmune cells, such as microglia, and may subsequently impact neurons. In this study, we therefore examined the effects of acute and chronic ethanol (EtOH) on the corticosterone, endotoxin, and microglial and neuronal response to acute stress. METHODS: Male Wistar rats were treated intragastrically with acute EtOH and acutely stressed with restraint/water immersion. Another group of rats was treated intragastrically with chronic intermittent EtOH and acutely stressed following prolonged abstinence. Plasma corticosterone and endotoxin were measured, and immunohistochemical stains for the microglial marker CD11b and neuronal activation marker c-Fos were performed. RESULTS: Acute EtOH and acute stress interacted to increase plasma endotoxin and microglial CD11b, but not plasma corticosterone or neuronal c-Fos. Chronic EtOH caused a lasting sensitization of stress-induced plasma endotoxin, but not plasma corticosterone. Chronic EtOH also caused a lasting sensitization of stress-induced microglial CD11b, but not neuronal c-Fos. CONCLUSIONS: These results find acute EtOH combined with acute stress enhanced plasma endotoxin, as well as microglial CD11b in many brain regions. Chronic EtOH followed by acute stress also increased plasma endotoxin and microglial CD11b, suggesting a lasting sensitization to acute stress. Overall, these data suggest alcohol and stress interact to increase plasma endotoxin, resulting in enhanced microglial activation that could contribute to disease progression

    When open data closes the door:A critical examination of the past, present and the potential future for open data guidelines in journals

    Get PDF
    Opening data promises to improve research rigour and democratize knowledge production. But it also presents practical, theoretical, and ethical considerations for qualitative researchers in particular. Discussion about open data in qualitative social psychology predates the replication crisis. However, the nuances of this ongoing discussion have not been translated into current journal guidelines on open data. In this article, we summarize ongoing debates about open data from qualitative perspectives, and through a content analysis of 261 journals we establish the state of current journal policies for open data in the domain of social psychology. We critically discuss how current common expectations for open data may not be adequate for establishing qualitative rigour, can introduce ethical challenges, and may place those who wish to use qualitative approaches at a disadvantage in peer review and publication processes. We advise that future open data guidelines should aim to reflect the nuance of arguments surrounding data sharing in qualitative research, and move away from a universal “one-size-fits-all” approach to data sharing. This article outlines the past, present, and the potential future of open data guidelines in social-psychological journals. We conclude by offering recommendations for how journals might more inclusively consider the use of open data in qualitative methods, whilst recognizing and allowing space for the diverse perspectives, needs, and contexts of all forms of social-psychological research

    Ethanol Induces Secretion of Proinflammatory Extracellular Vesicles That Inhibit Adult Hippocampal Neurogenesis Through G9a/GLP-Epigenetic Signaling

    Get PDF
    Adult hippocampal neurogenesis (AHN) is involved in learning and memory as well as regulation of mood. Binge ethanol reduces AHN, though the mechanism is unknown. Microglia in the neurogenic niche are important regulators of AHN, and ethanol promotes proinflammatory microglia activation. We recently reported that extracellular vesicles (EVs) mediate ethanol-induced inflammatory signaling in microglia. Therefore, we investigated the role of EVs in ethanol-induced loss of adult hippocampal neurogenesis. At rest, microglia promoted neurogenesis through the secretion of pro-neurogenic extracellular vesicles (pn-EVs). Depletion of microglia using colony-stimulating factor 1 receptor (CSFR1) inhibition in vivo or using ex vivo organotypic brain slice cultures (OBSCs) caused a 30% and 56% loss of neurogenesis in the dentate, respectively, as measured by immunohistochemistry for doublecortin (DCX). Likewise, chemogenetic inhibition of microglia using a CD68.hM4di construct caused a 77% loss in OBSC, indicating a pro-neurogenic resting microglial phenotype. EVs from control OBSC were pro-neurogenic (pn-EVs), enhancing neurogenesis when transferred to other naive OBSC and restoring neurogenesis in microglia-depleted cultures. Ethanol inhibited neurogenesis and caused secretion of proinflammatory EVs (EtOH-EVs). EtOH-EVs reduced hippocampal neurogenesis in naïve OBSC by levels similar to ethanol. Neurogenesis involves complex regulation of chromatin structure that could involve EV signaling. Accordingly, EtOH-EVs were found to be enriched with mRNA for the euchromatin histone lysine methyltransferase (Ehm2t/G9a), an enzyme that reduces chromatin accessibility through histone-3 lysine-9 di-methylation (H3K9me2). EtOH-EVs induced G9a and H3K9me2 by 2-fold relative to pn-EVs in naïve OBSCs. Pharmacological inhibition of G9a with either BIX-01294 or UNC0642 prevented loss of neurogenesis caused by both EtOH and EtOH-EVs. Thus, this work finds that proinflammatory EtOH-EVs promote the loss of adult hippocampal neurogenesis through G9a-mediated epigenetic modification of chromatin structure

    Minimal nutrition intervention with high-protein/low-carbohydrate and low-fat, nutrient-dense food supplement improves body composition and exercise benefits in overweight adults: A randomized controlled trial

    Get PDF
    Background: Exercise and high-protein/reduced-carbohydrate and -fat diets have each been shown separately, or in combination with an energy-restricted diet to improve body composition and health in sedentary, overweight (BMI > 25) adults. The current study, instead, examined the physiological response to 10 weeks of combined aerobic and resistance exercise (EX) versus exercise + minimal nutrition intervention designed to alter the macronutrient profile, in the absence of energy restriction, using a commercially available high-protein/low-carbohydrate and low-fat, nutrient-dense food supplement (EXFS); versus control (CON). Methods: Thirty-eight previously sedentary, overweight subjects (female = 19; male = 19) were randomly assigned to either CON (n = 10), EX (n = 14) or EXFS (n = 14). EX and EXFS participated in supervised resistance and endurance training (2× and 3×/wk, respectively); EXFS consumed 1 shake/d (weeks 1 and 2) and 2 shakes/d (weeks 3–10). Results: EXFS significantly decreased total energy, carbohydrate and fat intake (-14.4%, -27.2% and -26.7%, respectively; p < 0.017), and increased protein and fiber intake (+52.1% and +21.2%, respectively; p < 0.017). EX and EXFS significantly decreased fat mass (-4.6% and -9.3%, respectively; p < 0.017), with a greater (p < 0.05) decrease in EXFS than EX and CON. Muscle mass increase only reached significance in EXFS (+2.3%; p < 0.017), which was greater (p < 0.05) than CON but not EX (+1.1%). Relative VO2max improved in both exercise groups (EX = +5.0% and EXFS = +7.9%; p < 0.017); however, only EXFS significantly improved absolute VO2max (+6.2%; p = 0.001). Time-to-exhaustion during treadmill testing increased in EX (+9.8%) but was significantly less (p < 0.05) than in EXFS (+21.2%). Total cholesterol and LDL decreased only in the EXFS (-12.0% and -13.3%, respectively; p < 0.017). Total cholesterol-to-HDL ratio, however, decreased significantly (p < 0.017) in both exercise groups. Conclusion: Absent energy restriction or other dietary controls, provision of a high-protein/low-carbohydrate and -fat, nutrient-dense food supplement significantly, 1) modified ad libitum macronutrient and energy intake (behavior effect), 2) improved physiological adaptations to exercise (metabolic advantage), and 3) reduced the variability of individual responses for fat mass, muscle mass and time-to-exhaustion – all three variables improving in 100% of EXFS subjects

    Obligations of Researchers and Managers to Respect Wetlands: Practical Solutions to Minimizing Field Monitoring Impacts

    Get PDF
    Research and field monitoring can disturb wetland integrity. Adoption of ethical field practices is needed to limit monitoring induced stressors such as trampling, non-native seed and invertebrate dispersal, and disease and fungal spread. We identify a linear pathway of deterioration highlighting stressors that can progress to cumulative impacts, consequences, and losses at the site scale. The first step to minimize disturbance is to assess and classify the current ecosystem quality. We present a tiered framework for wetland classification and link preventative measures to the wetland tier. Preventative measures are recommended at various intensities respective to the wetland tier, with higher tiered wetlands requiring more intense preventative measures. In addition, preventative measures vary by time of implementation (before, during, and after the wetland visit) to mitigate impacts at various temporal scales. The framework is designed to increase transparency of field monitoring impacts and to promote the adoption of preventative measures. Implementing preventative measures can build accountability and foster a greater appreciation for our roles as researchers and managers in protecting wetlands

    Non-zero entropy density in the XY chain out of equilibrium

    Full text link
    The von Neumann entropy density of a block of n spins is proved to be non-zero for large n in the non-equilibrium steady state of the XY chain constructed by coupling a finite cutout of the chain to the two infinite parts to its left and right which act as thermal reservoirs at different temperatures. Moreover, the non-equilibrium density is shown to be strictly greater than the density in thermal equilibrium
    corecore