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Abstract

Serotonergic neurons of the raphe nucleus regulate sleep, mood, endocrine function, and other 

processes that mature during adolescence. Alcohol abuse and binge drinking are common during 

human adolescence. We tested the novel hypothesis that adolescent intermittent ethanol exposure 

would alter the serotonergic system that would persist into adulthood. Using a Wistar rat model of 

adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P]25 to 

P55), we found a loss of dorsal raphe nucleus (DRN) serotonin (5-HT)-immunoreactive (+IR) 

neurons that persisted from late adolescence (P56) into adulthood (P220). Hypothalamic and 

amygdalar DRN serotonergic projections were reduced following AIE. Tryptophan hydroxylase 2, 

the rate-limiting 5-HT synthesizing enzyme, and vesicular monoamine transporter 2, which 

packages 5-HT into synaptic vesicles, were also reduced in the young adult midbrain following 

AIE treatment. Adolescent intermittent ethanol treatment increased expression of phosphorylated 

(activated) NF-κB p65 as well as markers of microglial activation (i.e., Iba-1 and CD11b) in the 

adult DRN. Administration of lipopolysaccharide to mimic AIE-induced innate immune activation 

reduced 5-HT+IR and increased phosphorylated NF-κB p65+IR similar to AIE treatment. 

Voluntary exercise during adolescence through young adulthood blunted microglial marker and 

phosphorylated NF-κB p65+IR, and prevented the AIE-induced loss of 5-HT+IR neurons in the 

DRN. Together, these novel data reveal that AIE reduces 5-HT+IR neurons in the adult DRN, 

possibly through an innate immune mechanism, which might impact adult cognition, arousal, or 

reward sensitivity. Further, exercise prevents the deleterious effects of AIE on the serotonergic 

system.
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1. Introduction

Adolescence is a highly conserved neurodevelopmental period that marks the transition from 

childhood to adulthood, and is characterized behaviorally by increased social interactions 

and risk-taking (i.e., novelty- and sensation-seeking [Spear, 2011]). In parallel, the brain 

undergoes significant maturation of neurocircuitry and refinement of several 

neurotransmitter systems (Coleman et al., 2011; Crews et al., In Press; Spear, 2000; Weir et 

al., 2012), including the serotonergic system (Lidov and Molliver, 1982; Shoval et al., 2014). 

Serotonin (5-hydroxytryptamine, 5-HT)-producing neurons are primarily located within the 

brainstem raphe nuclei and are generated prenatally in the brain (Lauder, 1990). 

Serotonergic neurons innervate multiple brain regions and these projections undergo 

significant refinement during adolescence (Dori et al., 1996; Xu et al., 2001). Serotonin is a 

neuromodulatory neurotransmitter involved in synaptic plasticity, learning and memory, 

mood regulation, sleep, and endocrine processes that mature during adolescence, and 

dysregulation of this system is linked to several psychiatric disorders, including depression, 

impulsivity, and alcohol dependence (Michelsen et al., 2007; Muller and Homberg, 2015; 

Nautiyal et al., 2015). It is currently unknown whether adolescent binge drinking alters 

populations of 5-HT-immunopositive neurons in the adult raphe nucleus.

In humans, adolescent risk-taking and sensation-seeking behaviors coincide with the onset 

of alcohol and drug experimentation (Windle et al., 2008). Studies reveal that by age 14, 

binge drinking is common among youth in the United States, with current statistics reporting 

heavy episodic binge drinking (i.e., >5 consecutive drinks per binge drinking episode) in 

approximately 5% of 13–14 year old 8th graders, 22% of 12th graders, and >40% of college 

students (Johnston et al., 2013; White et al., 2006). Since the adolescent rat brain has been 

found to be more sensitive to alcohol neurotoxicity (Crews et al., 2000), maturational 

processes occurring in the adolescent brain suggest adolescence may be a particularly 

vulnerable period of elevated risk for later development of addiction and other disorders 

(Crews and Boettiger, 2009). Employing the rodent adolescent intermittent ethanol (AIE) 

model of human adolescent binge drinking, our laboratory and others found evidence of 

long-term cognitive dysfunction, increased impulsivity and anxiety-like behaviors, increased 

alcohol preference and drinking, and increased expression of multiple innate immune genes 

in adulthood (Crews et al., In Press; Spear and Swartzwelder, 2014; Vetreno and Crews, 

2012, 2015; Vetreno et al., 2013). However, it is unknown if adolescent binge ethanol 

exposure leads to long lasting changes in the adult serotonergic system.

Multiple studies have found that alcoholism is associated with innate immune gene 

induction in the brain (see e.g., Cui et al., 2015). There is increased expression of microglial 

(He and Crews, 2008) and innate immune markers (Crews et al., 2013; Vetreno et al., 2013) 

in postmortem human alcoholic brain samples. Adolescent intermittent ethanol treatment in 

rats also increases innate immune gene expression in the prefrontal cortex (Vetreno and 

Crews, 2012; Vetreno et al., 2013) and hippocampus (Vetreno and Crews, 2015). In ex vivo 
slice culture, innate immune signaling reduces 5-HT+IR neurons (Hochstrasser et al., 2011). 

Since adult alcohol use disorders and other drinking problems are associated with an earlier 

age of drinking onset (Sher and Gotham, 1999) and dysfunction of the serotonergic system 

is associated with increased alcohol consumption and dependence (LeMarquand et al., 
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1994a, b), it is imperative to determine the effect of adolescent binge ethanol exposure on 

the adult serotonergic system. In the current study, we tested the novel hypothesis that AIE 

treatment would alter serotonergic neurons that would persist into adulthood. To test this 

hypothesis, 5-HT+IR in the dorsal raphe nucleus was assessed following treatment with our 

model of adolescent intermittent ethanol (AIE). Lipopolysaccharide (LPS), which is known 

to increase brain innate immune gene expression, was used to determine if brain innate 

immune gene induction would mimic the AIE-induced loss of 5-HT+IR neurons in the adult 

raphe nucleus. Further, previous studies find that voluntary exercise prevents ethanol-

induced neuropathology in adult mice (Crews et al., 2004). Thus, we sought to determine 

whether wheel running would prevent the AIE-induced innate immune response and 5-HT

+IR neuronal loss in adulthood. Our findings suggest that voluntary exercise can prevent the 

loss of 5-HT expression and brain innate immune upregulation by AIE. The novel findings 

presented are consistent with adolescent binge drinking leading to long-lasting changes in 

innate immune signaling in the adult raphe nucleus that contribute to reductions in 5-HT+IR 

neurons.

2. Materials and Methods

2.1. Animals

Young time-mated pregnant female Wistar rats (embryonic day 17; Harlan Sprague-Dawley, 

Indianapolis, IN) were acclimated to our animal facility prior to birthing at the University of 

North Carolina at Chapel Hill. On postnatal day 1 (P1; 24 hr after birth), litters were culled 

to 10 pups (6 males and 4 females) and housed with their dam in standard clear plastic tubs 

with shavings until group housing with same-sex littermates at the time of weaning on P21. 

All animals were housed in a temperature- (20°C) and humidity-controlled vivarium on a 12 

hr/12 hr light/dark cycle (light onset at 0700 hr), and provided ad libitum access to food and 

water. Experimental procedures were approved by the Institutional Animal Care and Use 

Committee of the University of North Carolina at Chapel Hill, and conducted in accordance 

with the National Institutes of Health regulations for the care and use of animals in research.

2.2. Adolescent intermittent ethanol (AIE) paradigm

On P21, male Wistar rats were randomly assigned to either: (i) AIE (n = 57) or (ii) water 

control (CON; n = 54). To minimize the impact of litter, no more than one subject from a 

given litter was assigned to any experimental condition. From P25 to P55, AIE animals 

received a single daily intragastric (i.g.) administration of ethanol (5.0 g/kg, 20% ethanol 

w/v) in the AM on a two-day on/two-day off schedule and CON subjects received 

comparable volumes of water. A separate naïve unmanipulated control group (NC) was 

included that was not handled for the duration of experimentation except for routine animal 

care. Tail blood was collected to assess blood ethanol concentrations (BECs) one hr after 

ethanol administration on P38 and P54, and BECs were assessed using a GM7 Analyzer 

(Analox, London, UK). On P38 and P54, mean BECs (±SEM) were 181 ± 5 mg/dL and 185 

± 7 mg/dL, respectively. Across experiments, body weights (g) were measured and all 

subjects evidenced dramatic increases across age (see Figure 1A).
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2.3. Voluntary wheel running exposure

On P24, a separate group of animals was randomly assigned to one of four groups and 

housed in pairs: CON- and AIE-treated animals housed with running wheels (Exercise; 

CON = 9, AIE = 10), and CON- and AIE-treated animals housed in normal cages (No 

exercise; CON = 8, AIE = 8). All groups were housed in pairs since social isolation can 

delay or counteract the beneficial effects of exercise (Leasure and Decker, 2009; Stranahan 

et al., 2006). Subjects in both exercising treatment groups were exposed to the running 

wheels 24 hr per day for the duration of the experiment. The exercise apparatus consisted of 

specifically designed cages with a running wheel attachment (Nalge designed for Minimitter 

Company, Sun River, OR). Dimensions of the fully assembled cage with the wheels were 50 

cm × 27 cm × 36 cm. Although the running wheels did not contain a tachometer, all rats 

were observed daily running on the wheels and remained in their respective housing 

conditions until sacrifice on P80. Running wheel exposure did not affect BECs at either P38 

(AIE/No exercise: 162 ± 16 mg/dL, AIE/Exercise: 169 ± 12 mg/dL; one-way ANOVA: 

F[1,16] = 0.14, p = 0.7) or P54 (AIE/No exercise: 160 ± 12 mg/dL, AIE/Exercise: 160 ± 22 

mg/dL; one-way ANOVA: F[1,16] = 0.0, p = 0.99).

2.4. Lipopolysaccharide (LPS) treatment

On P70, separate groups of CON- and AIE-treated animals (LPS; CON = 8, AIE = 8) 

received a single intraperitoneal (i.p.) injection of 1.0 mg/kg LPS (E. Coli, serotype 

0111:B4; Sigma-Aldrich, St. Louis, MO) or saline (SAL; CON = 8, AIE = 8). Subjects were 

monitored for sickness behavior 24 hr following LPS administration and sacrificed 10 days 

later on P80.

2.5. Perfusion, brain tissue preparation, and immunohistochemistry

For all immunohistochemistry experiments, subjects were anesthetized with a lethal dose of 

sodium pentobarbital (100 mg/kg, i.p.) and transcardially perfused with 0.1 M phosphate-

buffered saline (PBS, pH 7.4), followed by 4.0% paraformaldehyde in PBS. Brains were 

excised and post-fixed in 4.0% paraformaldehyde for 24 hr at 4ºC followed by 4 days of 

fixation in 30% sucrose solution.

In the initial experiment, intact brain samples from young adult P80 animals (16 subjects 

[CON (n = 8) and AIE (n = 8)]) were shipped to NeuroScience Associates (Knoxville, TN) 

to perform full brain 5-HT+IR immunohistochemistry. Upon receipt at NeuroScience 

Associates, brain samples were treated overnight with 20% glycerol and 2.0% 

dimethylsulfoxide to prevent freezing artifacts, and multiply embedded (16 brains per block 

[CON (n = 8) and AIE (n = 8)]) in a gelatin matrix using MultiBrain™ Technology. After 

curing, the block containing the brain samples was rapidly frozen by immersion in 

isopentane chilled to −70° C with crushed dry ice and mounted to the freezing stage of an 

AO 860 sliding microtome. The MultiBrain™ block was sectioned coronally at a thickness 

of 40 μm and collected sequentially into a 4 × 6 array of containers containing Antigen 

Preserve Solution (50% PBS [pH 7.0], 50% ethylene glycol, 1.0% polyvinyl pyrrolidone). 

Samples were stored at −20° C until immunohistochemistry. Free-floating MultiBrain™ 

sections were washed in Tris-buffered saline (TBS), incubated in H2O2 to inhibit 

endogenous peroxidase activity, and blocked with normal goat serum. Sections were 
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incubated overnight at room temperature in the primary antibody rabbit anti-serotonin (5-

HT; ImmunoStar, Hudson, WI, Cat. No. 20080) diluted in TBS containing 0.3% 

TritonX-100. Sections were then washed with TBS, incubated in a goat anti-rabbit 

secondary antibody solution, and incubated in an avidin-biotin-HRP complex solution 

(Vectastain ABC Kit; Vector Laboratories). After washing with TBS, the sections were 

treated with diaminobenzidine tetrahydrochloride (DAB) and H2O2 to visualize 

immunoreactivity. Sections were mounted on gelatinized (subbed) glass slides, air-dried, 

dehydrated in alcohol, cleared with xylene, and coverslipped. Stained samples were then 

shipped back to the University of North Carolina at Chapel Hill for immunohistological 

quantification.

For the remainder of immunohistochemical experiments, coronal sections were cut (40 μm) 

on a sliding microtome (MICROM HM450; ThermoScientific, Austin, TX), and sections 

were sequentially collected into well plates and stored at −20ºC in a cryoprotectant solution 

(30% glycol/30% ethylene glycol in PBS) for immunohistochemistry. Free-floating sections 

(1:6 series throughout the raphe nucleus, hypothalamus, basolateral amygdala, and prelimbic 

cortex) were washed in 0.1 M PBS, incubated in 0.3% H2O2 to inhibit endogenous 

peroxidases, and blocked with normal serum (MP Biomedicals, Solon, OH). Sections were 

incubated in either rabbit anti-5-HT (1:20,000; ImmunoStar), rabbit anti-ionized calcium-

binding adapter molecule 1 (1:1000; Iba-1; Wako Chemicals, Richmond, VA, Cat. No. 

019-19741), rabbit anti-phosphorylated nuclear factor kappa-light-chain-enhancer of 

activated B cells p65 (1:300; pNF-κB p65 [Ser 276]; Santa Cruz Biotechnologies, Dallas, 

TX, Cat. No. sc-101749), mouse anti-tryptophan hydroxylase 1 (1:200; TPH1; Millipore, 

Temecula, CA, Cat. No. AB15570-I), mouse anti-CD11b (1:1000; AbD Serotec, Raleigh, 

NC, Cat. No. MCA275R), or mouse anti-ED1 (1:1000; AbD Serotec, Cat. No. MCA341R) 

for 24 hr at 4ºC. Sections were washed with PBS, incubated for one hr in biotinylated 

secondary antibody (Vector Laboratories, Burlingame, CA), and incubated for one hr in 

avidin-biotin complex solution (Vectastain ABC Kit; Vector Laboratories). The chromogen, 

nickel-enhanced DAB (Sigma-Aldrich), was used to visualize immunoreactivity. Tissue was 

mounted onto slides, dehydrated, and coverslipped. Negative control for non-specific 

binding was conducted on separate sections employing the abovementioned procedures and 

omitting the primary antibody.

2.6. Microscopic quantification and image analysis

The BioQuant Nova Advanced Image Analysis system (R&M Biometric, Nashville, TN) 

was used for image capture and analysis. Images were captured using an Olympus BX50 

microscope and Sony DXC-390 video camera linked to a computer. For each measure, the 

microscope, camera, and software were background corrected, and normalized to preset 

light levels to ensure fidelity of data acquisition.

Assessment of 5-HT+IR was performed in the dorsal and median raphe nuclei as well as 

serotonergic projection sites (i.e., hypothalamus, amygdala, and prelimbic cortex) according 

to the atlas of Paxinos and Watson (1998) (see Figure 1B). Pixel density was used to assess 

CD11b+IR in the DRN and 5-HT terminal fields in the prelimbic cortex, hypothalamus, and 

basolateral amygdala, and was rigorously thresholded to normalize pixel intensity (Vetreno 
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et al., 2013). The threshold for pixel density was determined from the control subjects by 

calculating the average of the darkest and lightest values from each region of interest and 

sections were imaged under identical conditions to avoid non-systematic variations (Beynon 

and Walker, 2012). The outlined regions of interest were determined according to the atlas of 

Paxinos and Watson (1998) and staining density calculated by dividing the pixel count by 

the overall area (mm2). The total number of 5-HT+IR, pNF-κBp65+IR, Iba-1+IR, and 

ED-1+IR cells was quantified using a modified stereological approach (Crews et al., 2004), 

and data expressed as cells per mm2.

2.7. Brain tissue preparation and Western blot analysis

For Western blots, 14 subjects (CON [n = 7] and AIE [n = 7]) were anesthetized on P80 with 

sodium pentobarbital (100 mg/kg, i.p.) and transcardially perfused with 0.1 M PBS. 

Immediately following perfusion, tissue samples were rapidly dissected, preserved in liquid 

nitrogen, and stored at −80° C until use. Since 5-HT expression was reduced in the DRN, 

hypothalamus, and basolateral amygdala, but increased in the prelimbic cortex, we dissected 

the frontal cortex and entire midbrain to determine whether other serotonergic markers were 

altered by AIE. Frozen frontal cortex and midbrain samples (see Figure 1C) were separately 

homogenized in RIPA lysis buffer (Sigma-Aldrich) containing protease inhibitor (1:100; 

Sigma-Aldrich) and centrifuged at 14,000 rpm at 4° C for 20 min. After centrifugation, 

protein content in the supernatant was assessed using the Pierce BCA Protein Assay Kit 

(ThermoScientific, Rockford, IL). A total of 20 ug of protein from each denatured sample 

was loaded into precast polyacrylamide mini-gel (4–15%; Bio-Rad, Hercules, CA) and 

transferred onto immunoblot PVDF membranes (Bio-Rad). Immunoblot membranes were 

blocked in Odyssey blocking buffer (LiCOR Biosciences, Lincoln, NE). Membranes were 

incubated overnight at 4°C in a primary antibody solution containing either rabbit anti-

serotonin transporter (1:1000; SERT; Millipore), mouse anti-tryptophan hydroxylase 2 

(1:1000; TPH2; Sigma-Aldrich), or rabbit anti-vesicular monoamine transporter 2 (1:1000; 

VMAT2; Abcam; Cambridge, MA), and one of the following housekeeping proteins: mouse 

anti-β-actin (Abcam) or rabbit anti-tubulin (Cell Signaling, Danvers, MA). After washing, 

membranes were incubated in appropriate fluorescent secondary antibodies (Rockland 

Immunochemicals, Gilbertsville, PA), and bands were scanned with an Odyssey Infrared 

Imager (LiCOR Biosciences). Band intensity was quantified using Odyssey Imaging 

software and normalized to either β-actin or tubulin. All experiments were run in triplicate.

2.8. Statistical Analysis

Statistical analysis was performed using the Statistical Package for Social Sciences 

(Chicago, IL). Analysis of variance (ANOVA) was used to assess BECs, body weights, 

immunohistochemistry, and Western blot data. Post-hoc analyses were performed using 

Tukey’s HSD where appropriate. To determine outliers, the median, upper, and lower 

quartiles were calculated, and data points that exceeded the 1.5 × interquartile range were 

removed from further analysis. No more than one animal was removed from any group. All 

values are reported as mean ± SEM, and significance was defined as p ≤ 0.05.
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3. Results

3.1. 5-Hydroxytryptamine-immunopositive serotonergic cell populations are persistently 
reduced in the DRN following AIE treatment

Immunohistochemistry was used to label and quantify serotonergic cell populations in the 

dorsal and median raphe nucleus of male Wistar rats across aging and following AIE 

treatment. Tissue samples were collected from subjects sacrificed on P56 (24 hr post-AIE 

treatment; CON = 8, AIE = 8), P80 (25 days post-AIE treatment; CON = 8, AIE = 8), and 

P220 (165 days post-AIE treatment; CON = 7, AIE = 7). Evaluation of 5-HT+IR neurons 

revealed well-defined heterogeneously distributed small and large darkly stained cell bodies 

and processes in dorsal and median raphe nucleus samples from CON- and AIE-treated 

subjects. Across aging from P56 to P220 in the CON subjects, we observed a 29% reduction 

of 5-HT+IR neurons in the DRN (one-way ANOVA: F[2,20] = 7.7, p < 0.01; see Figure 2). 

Importantly, 5-HT+IR cell counts did not differ between CON and NC animals (25 days 

post-AIE treatment; NC = 8, CON = 8) on P80 (one-way ANOVA: F[1,14] = 0.009, p = 0.93), 

suggesting that the gavage technique is not a contributing factor to the observed age-

associated reduction. Thus, the number of 5-HT+IR cells shows an age-associated reduction 

in the DRN.

Our adolescent binge ethanol paradigm involves an intermittent exposure schedule 

consistent with known patterns of heavy adolescent-typical weekend binge drinking, but not 

daily drinking behaviors associated with alcohol dependence. A 2 × 3 ANOVA (Treatment 

[CON vs. AIE] × Age [P56 vs. P80 vs. P220]) revealed that relative to CON subjects, AIE 

treatment significantly reduced 5-HT+IR in the DRN (main effect of Treatment: F[1,40] = 

22.3, p < 0.01; see Figure 2). Follow-up analyses revealed that across each time point, AIE 

treatment reduced 5-HT+IR in the DRN by 27% (±6%) on P56 (one-way ANOVA: F[1,14] = 

9.3, p < 0.01), 20% (±5%) on P80 (one-way ANOVA: F[1,14] = 10.0, p < 0.01), and 16% 

(±1%) on P220 (one-way ANOVA: F[1,12] = 5.4, p < 0.05). Further, while expression of 5-

HT+IR did not differ between NC and CON animals (p = 0.93) on P80, post-hoc analysis 

revealed that 5-HT+IR was also reduced by (19% [±5%]; p < 0.05) in AIE-treated animals 

relative to NC animals (see Figure 2 inset). Interestingly, AIE-treated animals at P56 had 

similar levels of 5-HT+IR neurons as CON subjects on P220. Serotonergic process densities 

were similarly reduced by 29% (±11%) in the DRN of young adult (P80) AIE-treated 

animals, relative to CONs (one-way ANOVA: F[1,13] = 4.9, p < 0.05; CON = 8, AIE = 7). 

There was no effect of AIE treatment on 5-HT+IR in the median raphe nucleus (data not 

shown). Thus, AIE leads to long-term reductions of 5-HT+IR cell populations and process 

densities in the DRN.

3.2. 5-Hydroxytryptamine terminal field densities are altered in young adult serotonergic 
projection sites following adolescent binge ethanol exposure

Since serotonergic neurons project to multiple brain regions and AIE was found to reduce 5-

HT+IR in the DRN, we next assessed 5-HT+IR terminal field densities in other brain 

regions. Across sampled regions, assessment of 5-HT+IR revealed darkly stained processes 

in both CON- and AIE-treated young adult (P80) (CON = 8, AIE = 8) animals. In the 

hypothalamus, AIE treatment reduced 5-HT+IR fiber densities by 38% (±7%), relative to 
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CONs (one-way ANOVA: F[1,13] = 4.7, p = 0.05; CON = 8, AIE = 7; see Figure 3A). 

Similarly, serotonergic fiber densities were reduced by 20% (±7%) in the basolateral 

amygdala of AIE-treated animals, relative to CONs (one-way ANOVA: F[1,14] = 4.7, p = 

0.05; see Figure 3B). On the contrary, serotonergic fiber densities were increased in the 

prelimbic cortex of AIE-treated animals (112% [±31%]) in comparison to CONs (one-way 

ANOVA: F[1,13] = 19.4, p < 0.01; CON = 8, AIE = 7; see Figure 3C), but further analysis of 

the frontal cortex did not reveal changes in other serotonin markers (see below) suggesting 

that prefrontal cortex changes are subtle. Further, we did not observe any TPH1 expression 

in the prelimbic cortex of CON- or AIE-treated animals (data not shown). Together, these 

data reveal that AIE treatment leads to long-lasting reductions of 5-HT+IR in the amygdala 

and hypothalamus, which are two key projection sites of the DRN.

3.3. Adolescent binge ethanol treatment decreases serotonergic markers in the young 
adult midbrain but not frontal cortex

Since 5-HT+IR cell populations were reduced in the DRN, we next assessed the effect of 

AIE on protein expression of other serotonergic markers in the young adult brain (P80) 

(CON = 7, AIE = 7) using Western blot analysis. We assessed serotonergic marker 

expression in separately dissected frontal cortex and midbrain tissue samples due to the 

terminal field findings described in the previous section. Expression of TPH2, the rate-

limiting enzyme responsible for synthesis of 5-HT in the brain, was unchanged in the frontal 

cortex samples (one-way ANOVA: F[1,12] = 1.5, p = 0.3) and reduced by 21% (±6%) in the 

midbrain of young adult AIE-treated animals, relative to CONs (one-way ANOVA: F[1,12] = 

9.3, p < 0.01). Expression of SERT, which transports extracellular 5-HT into the presynaptic 

neuron, was unchanged in the frontal cortex samples (one-way ANOVA: p = 0.8) and 

insignificantly reduced in the young adulthood midbrain following AIE treatment (one-way 

ANOVA: p = 0.14). Further, while protein levels of VMAT2, which transports intracellular 

monoamines (e.g., 5-HT) into synaptic vesicles, were unchanged in the frontal cortex 

samples (one-way ANOVA: F[1,12] = 0.5, p = 0.5), protein expression was reduced by 24% 

(±5%) in the midbrain of young adult AIE-treated animals, relative to CONs (one-way 

ANOVA: F[1,12] = 6.5, p < 0.05; see Figure 4). Thus, AIE treatment leads to reductions in 

serotonergic protein markers in the young adult midbrain, but not frontal cortex, 25 days 

following the conclusion of AIE treatment.

3.4. Adolescent binge ethanol treatment increases expression of microglia markers in the 
young adult DRN

Adolescent intermittent ethanol and chronic ethanol exposure in adulthood result in 

microglial activation, and increased expression of cytokines and other innate immune 

signaling molecules in brain (Crews and Vetreno, 2014; Crews et al., In Press; Marshall et 

al., 2013; McClain et al., 2011). To determine if AIE leads to long-term alterations in 

microglia, Iba-1 (microglial marker), CD11b (marker of microglial activation), and ED-1 

(marker of phagocytic amoeboid microglia) were assessed in the young adult (P80) (CON = 

8, AIE = 8) DRN using immunohistochemistry. In CON- and AIE-treated animals, 

assessment of Iba-1+IR revealed darkly stained cell bodies and processes. Adolescent binge 

ethanol treatment led to a significant 27% (±3%) increase in the number of Iba-1+IR cells in 

the young adult DRN, relative to CONs (one-way ANOVA: F[1,14] = 54.1, p < 0.01; see 
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Figure 5A). Analysis of CD11b+IR revealed darkly stained microglia in the AIE-treated 

animals and light staining in CONs. Adolescent binge ethanol treatment resulted in a 

significant 99% (±26%) increase in CD11b+IR pixel density in the young adult DRN, 

relative to CONs (one-way ANOVA: F[1,14] = 8.1, p < 0.05; see Figure 5B). ED-1 (CD68) 

immunohistochemistry did not show any staining in the raphe nucleus of either CON- or 

AIE-treated animals (see Figure 5C), but was evident in kainic acid positive control subjects. 

These findings are consisted with other studies reporting ethanol-induced increases in 

microglial markers and evidence of hyper-ramified activation, but not fully activated bushy 

or phagocytic morphology. Thus, AIE treatment leads to increased expression of microglial 

activation markers in the young adult DRN.

3.5. Lipopolysaccharide exposure mimics AIE-induced reductions of 5-HT+IR cell 
populations in the young adult DRN

Lipopolysaccharide (LPS) treatment of mice leads to a persistent increase in expression of 

proinflammatory cytokines and oxidases in the brain (Qin et al., 2007). To determine 

whether innate immune activation might contribute to the reduction of 5-HT+IR cells in the 

DRN, CON- and AIE-treated animals received a single dose of LPS (1.0 mg/kg, i.p.) on 

P70, and 5-HT+IR was assessed in young adulthood (P80) (CON/SAL = 8, CON/LPS = 8, 

AIE/SAL = 8, AIE/LPS = 8). A 2 × 2 ANOVA (Treatment × Drug [saline (SAL) vs. LPS]) 

replicated in an additional group revealed that AIE treatment significantly reduced 5-HT+IR 

in the DRN, relative to CONs (main effect of Treatment: F[1,28] = 4.2, p < 0.05). 

Furthermore, LPS treatment resulted in a significant reduction of 5-HT+IR, relative to SAL-

treated subjects (main effect of Drug: F[1,28] = 12.7, p < 0.01). Post-hoc analysis found that 

5-HT+IR was reduced by AIE/SAL (14% [±3%]; p < 0.05), CON/LPS (19% [±3%]; p < 

0.01), and AIE/LPS (19% [±3%]; p < 0.01), relative to SAL-treated CONs (interaction of 

Treatment × Drug: F[1,28] = 5.2, p < 0.05; see Figure 6). Thus, administration of the innate 

immune activator LPS induced a similar decrease in 5-HT+IR cells in the CON subjects, but 

did not further reduce 5-HT+IR cells in the AIE-treated subjects.

3.6 Voluntary exercise prevents AIE-induced reductions of 5-HT+IR neurons and increased 
microglia marker expression in the young adult DRN

Voluntary exercise in the form of wheel running has previously been shown to reverse the 

deleterious effects of ethanol exposure in adult mice (Crews et al., 2004). To determine 

whether exercise prevents AIE-induced reductions of 5-HT+IR cells in the DRN, subjects 

were exposed to running wheels beginning on P24 (24 hr prior to the onset of AIE) that 

continued until sacrifice in young adulthood (P80) (CON/No exercise = 8, CON/Exercise = 

9, AIE/No exercise = 8, AIE/Exercise = 10). A 2 × 2 ANOVA (Treatment × Exercise [No 

exercise vs. Exercise]) revealed that AIE treatment reduced 5-HT+IR in the DRN, relative to 

CONs (main effect of Treatment: F[1,31] = 4.1, p = 0.05). Furthermore, exercising subjects 

had significantly more 5-HT+IR cells in the DRN than non-exercising subjects (main effect 

of Exercise: F[1,31] = 6.0, p < 0.05). While a significant interaction of Treatment × Exercise 

was not observed, wheel running AIE-treated animals had significantly more 5-HT+IR cells 

than non-exercising AIE-treated animals (one-way ANOVA; F[1,16] = 10.8, p < 0.01; see 

Figure 7). Thus, these data reveal that voluntary exercise prevents the AIE-induced loss of 5-

HT+IR cells in the DRN.
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To determine if voluntary exercise exposure prevented the AIE-induced increase in 

microglia marker expression, Iba-1 and CD11b immunohistochemistry was assessed. A 2 × 

2 ANOVA (Treatment × Exercise) revealed an exercise-induced reduction of Iba-1+IR 

microglia in the DRN, relative to non-exercising subjects (main effect of Exercise: F[1,31] = 

5.1, p < 0.05). Further, post-hoc analysis of the significant interaction of Treatment × 

Exercise (F[1,31] = 8.2, p < 0.01) revealed that, relative to non-exercising CONs, Iba-1+IR 

was increased by 20% (±6%) in the non-exercising AIE-treated animals (p < 0.05) while 

there was no effect in the exercising AIE animals (see Figure 8A). A 2 × 2 ANOVA 

(Treatment × Exercise) revealed that AIE treatment increased CD11b+IR microglia in the 

DRN, relative to CON-treated subjects (main effect of Treatment: F[1,31] = 10.4, p < 0.01). 

Further, voluntary exercise was found to reduce CD11b immunoreactivity, relative to non-

exercising subjects (main effect of Exercise: F[1,31] = 7.9, p < 0.01; see Figure 8B). Thus, 

these data reveal that voluntary exercise prevented the AIE-induced microglial activation in 

the DRN as well as the loss of serotonin marker expression.

3.7. Lipopolysaccharide exposure mimics and voluntary exercise prevents AIE-induced 
upregulation of pNF-κB p65 in the young adult DRN

Our laboratory and others previously found that AIE upregulates innate immune signaling 

molecules and Toll-like receptor 4 expression in multiple brain regions that persist into 

young adulthood (Pascual et al., 2014; Vetreno and Crews, 2012, 2015). Phosphorylated 

nuclear factor kappa-light-chain-enhancer of activated B cells p65 is essential for NF-κB 

nuclear translocation and induction of proinflammatory cytokines. Since AIE is associated 

with long-term upregulation of proinflammatory cytokines in the brain, we assessed 

expression of pNF-κB p65 in the young adult (P80) (CON/SAL = 7, CON/LPS = 8, 

AIE/SAL = 8, AIE/LPS = 8) DRN following AIE and LPS treatment. A 2 × 2 ANOVA 

(Treatment × Drug) revealed that AIE treatment significantly increased expression of pNF-

κB p65+IR in the DRN, relative to CONs (main effect of Treatment: F[1,27] = 4.9, p < 0.05). 

Further, LPS treatment increased pNF-κB p65+IR, relative to SAL-treated subjects (main 

effect of Drug: F[1,27] = 4.1, p = 0.05). While a significant interaction of Treatment × Drug 

was not observed, pNF-κB p65+IR was increased in AIE/SAL (73% [±19%]; p = 0.01), 

CON/LPS (69% [±21%]; p < 0.05), and AIE/LPS (96% [±31%]; p < 0.05), relative to SAL-

treated CONs (see Figure 9A). Thus, AIE treatment increased expression of pNF-κB p65 

and administration of LPS induced a similar increase in pNF-κB p65 in the CON subjects.

To determine if voluntary exercise exposure would prevent the AIE-induced increase in 

phosphorylated NF-κB expression, pNF-κB p65 immunohistochemistry was performed in 

the DRN in young adulthood (P80) (CON/No exercise = 8, CON/Exercise = 8, AIE/No 

exercise = 8, AIE/Exercise = 8). A 2 × 2 ANOVA (Treatment × Exercise) revealed an 

exercise-induced reduction of pNF-κB p65+IR in the DRN, relative to non-exercising 

subjects (main effect of Exercise: F[1,28] = 5.1, p < 0.05). Further, post-hoc analysis of the 

significant interaction of Treatment × Exercise (F[1,28] = 4.5, p < 0.05) revealed that, relative 

to non-exercising CONs, pNF-κB p65+IR was increased by 61% (±12%) in the non-

exercising AIE-treated animals (p < 0.05) while there was no effect in the exercising AIE 

animals (see Figure 9B). Thus, these data reveal that voluntary exercise prevented the 

increase in pNF-κB p65 expression in the DRN following AIE treatment.
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4. Discussion

We report here that adolescent binge ethanol exposure leads to long-term reductions of 5-HT

+IR cells in the dorsal, but not median, raphe nucleus that persists from late adolescence 

(P56) into adulthood (P220). These findings are consistent with work from Evrard and 

colleagues (2006) that found late adolescent rats (i.e., P45) exposed to ethanol liquid diet for 

six weeks (6.6% ethanol with BECs of ~19.0 mg/dL) had an approximate 30% reduction of 

5-HT+IR staining density in the adult DRN. Although the blood ethanol levels in Evrard’s 

study were 10% of the levels in our study, both find that ethanol decreases DRN, but not 

median raphe nucleus 5-HT+IR (Evrard et al., 2006). Notably, the literature indicates that 

the DRN might be more susceptive to degeneration in response to a neurotoxic insult than 

other 5-HT nuclei (Gartside et al., 1997; Kosofsky and Molliver, 1987; O’Hearn et al., 1988; 

Tagliaferro et al., 1997). Further, Evrard and colleagues (2006) found that 5-HT+IR staining 

density in DRN returned to control levels 10 weeks after ethanol treatment consistent with 

either depletion of 5-HT or neuronal shrinkage. Our AIE treatment paradigm, which models 

human levels of binge drinking, caused a loss of 5-HT+IR neurons that persisted from P56 

to P220 (i.e., over 23 weeks). Adolescent intermittent ethanol treatment also decreased 

midbrain protein levels of TPH2 and VMAT2, markers of 5-HT neurons that regulate 5-HT 

synthesis and vesicular 5-HT packaging, respectively. Further, we found reduced 5-HT+IR 

in amygdala and hypothalamus, brain regions with known projections from serotonergic 

DRN neurons. Together, each of these findings supports a persistent loss of 5-HT+IR 

neurons following AIE treatment in the adult brain.

The reduction in DRN 5-HT+IR neurons was paralleled by increased Iba-1+IR and CD11b

+IR microglia, and pNF-κB p65 expression in the adult DRN that is consistent with AIE 

treatment leading to increased hyper-ramified microglial activation and induction of innate 

immunity (see Figure 10; Crews and Vetreno, 2015). Previous studies found that AIE 

treatment increased expression of microglial markers and/or innate immune signaling genes 

in adult frontal cortex (Vetreno and Crews, 2012; Vetreno et al., 2013) and hippocampus 

(Vetreno and Crews, 2015) as well as the post-mortem human alcohol brain (Crews et al., 

2013; He and Crews, 2008; Vetreno et al., 2013). Multiple studies suggest that microglia and 

proinflammatory cytokines contribute to alcoholic brain pathologies (Crews et al., 2006; 

Crews and Vetreno, 2014, 2015). We found that AIE increased markers for hyper-ramified, 

but not amoeboid microglia, in the DRN that are associated with increased secretion of 

proinflammatory cytokines and other signaling molecules (Beynon and Walker, 2012). This 

relationship is further supported by our finding that exercise (i.e., voluntary wheel running) 

during AIE prevents upregulation of microglial activation markers, increased pNF-κB 

p65+IR, and the loss of 5-HT+IR neurons in the adult DRN. Similarly, in an animal model 

of ischemia, treadmill running was found to reduce CD11b+IR microglia in adult male 

Wistar rats (Ang et al., 2004). We observed that voluntary exercise prevented the AIE-

induced loss of 5-HT+IR neurons in the adult DRN; however, caution must be exerted when 

interpreting these data as it is possible that exposure to the wheel was beneficial as we did 

not include a control group with a locked wheel.

Across maturation from P56 to P220, we observed a 29% decrease of 5-HT+IR neurons in 

the DRN of control subjects. While extensive studies have defined the embryonic origins 
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and early postnatal development of the rat serotonergic system (Lauder, 1990; Lauder and 

Bloom, 1974), few studies have addressed its maturation from adolescence into adulthood. 

Lauder and colleagues (1982) observed an approximate 30% increase in synapses from P30 

to P60 in the rat DRN. Levels of 5-HT in the cortex and basal ganglia, which are projection 

sites of the DRN, increase between P35 and adulthood (Loizou, 1972). Further, consistent 

with our findings of larger populations of 5-HT+IR neurons in the adolescent DRN, 

Nakamura and colleagues (2006) reported a maturational decline in 5-HT+IR in the mouse 

DRN from P21 to P65. Thus, our findings of an age-associated decline of 5-HT+IR from 

P56 to P220 suggest an age-associated decline of dorsal raphe serotonergic neurons.

Lipopolysaccharide is known to induce a systemic innate immune response that activates 

brain microglia leading to induction of cytokines and other innate immune signaling 

molecules (Qin et al., 2007). Studies in mice find that LPS administration 24 hrs post-

ethanol treatment potentiates the innate immune response (Qin et al., 2008). Adolescent 

intermittent ethanol exposure has been shown in this study and others (e.g., Vetreno and 

Crews, 2012; Vetreno and Crews, 2015; Vetreno et al., 2013) to subtly increase innate 

immune expression in the adult brain. To model AIE neuroimmune induction in the adult 

brain, we used LPS to increase brain innate immune gene expression which we assessed 

using pNF-κB p65+IR, the active form of a key proinflammatory transcription factor. We 

found that a single dose of LPS assessed 10 days later increased pNF-κB p65+IR and 

reduced 5-HT+IR DRN neurons. These findings suggest that innate immune gene induction 

can reduce expression of 5-HT in the adult DRN. Further, we observed a trend toward 

increased pNF-κB p65+IR in the LPS-treated AIE subjects, but additional studies will be 

needed to understand the LPS-induced AIE responses and determine if AIE is desensitizing 

the LPS response in adulthood. Our studies find that AIE has a persistent effect of 

decreasing 5-HT+IR and increasing pNF-κB p65 consistent with long-lasting changes in the 

adult brain following adolescent alcohol exposure.

Application of LPS to DRN organotypic slice culture increase expression of 

proinflammatory cytokines (i.e., IL-1β, MCP-1, and TNFα) and reduced serotonergic 

neurons (Hochstrasser et al., 2011). Further, LPS-induced systemic inflammation in 

pregnant female rats causes a 31% decrease in TPH+IR DRN neurons in adult (P120) 

offspring (Wang et al., 2009), consistent with a developmental sensitivity of 5-HT neurons to 

LPS. Induction of brain innate immune signals is associated with most neurodegenerative 

diseases (Heneka et al., 2014), pain and depression (Walker et al., 2014), and alcoholism 

(Crews et al., 2011; Kelley and Dantzer, 2011), and is extensively modeled using LPS-

induced innate immune activation. Previous studies in rats have found that exercise can 

reduce the induction of TLR2, TLR4, MyD88, and NF-κB (Ma et al., 2013) as well as 

microglial activation and proinflammatory cytokine induction (Ang et al., 2004) in a rat 

model of cerebral ischemia. However, other studies in mice have found that systemic LPS 

induction of depression-like behavior and proinflammatory cytokines in liver and spleen 

(Martin et al., 2013) or in brain (Martin et al., 2014) are not reduced by voluntary exercise. 

These findings are consistent with differences between rats and mice as well as exercise 

having a greater impact on brain insult-induced innate immune responses than peripheral 

LPS-induced systemic innate immune responses. Alternatively, brain regional changes may 

be specific and not resolved in whole brain studies. For example, a recent study in rats found 
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that exercise reduced the induction of hippocampal IL-1β and IL-6 mRNA and protein 

during sleep deprivation, but the cerebral cortex was not altered by either sleep deprivation 

or exercise (Chennaoui et al., 2015). In our study, pNF-κB p65+IR and microglial markers 

in the DRN were used to assess innate immune responses. We found that LPS increased 

DRN pNF-κB p65+IR similar to AIE, and that running wheel exposure prevented the AIE-

induced increases in DRN pNF-κB p65+IR and loss of DRN 5-HT+IR. Thus, our findings 

are consistent with AIE increased DRN pNF-κB p65+IR and microglial markers 

contributing to the long-lasting reduction in 5-HT+IR neurons following AIE treatment.

Our finding that AIE treatment leads to long-term alterations in the serotonergic 

neurotransmitter system are of significant import as it could contribute to the development of 

psychopathologies as well as alcohol dependence later in life (Wrase et al., 2006). 

Adolescent intermittent ethanol increases adult anxiety-like behaviors (Sakharkar et al., 

2014; Vetreno et al., 2015), induces depressive-like behavior in adulthood (Ehlers et al., 

2011; Slawecki et al., 2004), disrupts sleep (Criado et al., 2008), and increases impulsivity in 

adulthood (Ehlers et al., 2011; Gass et al., 2014) that might be secondary to reduced 5-HT

+IR neurons in the DRN. Serotoninergic system dysfunction is associated with depression 

and alcoholism, which are co-morbid in humans (Kelley and Dantzer, 2011). Previous 

studies have linked innate immune induction to the development of depression (e.g., Dantzer 

et al., 2008) and depression with reduced levels of serotonin (Coppen and Doogan, 1988; 

Michelsen et al., 2007). Low brain 5-HT levels are linked to alcoholism and alleles of 

serotonergic genes associated with alcoholism, with strong evidence for decreased 5-HT 

turnover in Type 2 alcoholics with impaired impulse control and a history of suicide 

attempts (Linnoila et al., 1994; Virkkunen et al., 1996). Reductions in brain levels of 5-HT 

are associated with increased alcohol consumption (Barr et al., 2004; LeMarquand et al., 

1994a, b) and AIE leads to increased ethanol self-administration in adulthood (Alaux-Cantin 

et al., 2013; Gass et al., 2014; Pandey et al., 2015; Pascual et al., 2009). Adolescent alcohol-

preferring rats self-administering ethanol have reduced TPH2 and the vesicular transporter 

VMAT2 consistent with genetic and/or developmental raphe neuron sensitivity to alcohol 

(McClintick et al., 2015). Human studies using TPH+IR find reduced dorsal raphe neuron 

staining intensity in alcoholics, with no significant differences in numbers of neurons 

although variability was high limiting resolution of differences (Baker et al., 1996). More 

recent studies on post-mortem human alcoholics find increased dorsal raphe TPH2+IR 

expression (Bach et al., 2014; Underwood et al., 2007) as well as decreased serotonin 

transporter density as assessed by [3H]citalopram binding (Karkkainen et al., 2015) with 

both associated with variations in specific serotonin gene alleles. These findings confound 

clear conclusions while multiple serotonergic medications are being tested for treatment of 

alcoholism with some effect in certain populations with specific serotonergic genotypes 

(Kenna, 2010).

In summary, AIE treatment persistently reduced serotonergic neuron populations in the DRN 

and altered terminal field projections. While the mechanism underlying this reduction 

remains to be fully elucidated, the LPS effects, coupled with the increased populations of 

partially activated hyper-ramified microglia and increased expression of pNF-κB p65 in the 

DRN, implicate a role for the innate immune system in the AIE-induced persistent loss of 

serotonergic neurons. Interestingly, voluntary exercise prevented both the increase in hyper-
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ramified microglia and pNF-κB p65 as well as loss of serotonergic neurons in the DRN. The 

serotonergic system plays a neuromodulatory role in alcohol drinking and these novel 

findings might explain why adolescent onset of alcohol drinking drastically increases the 

likelihood of developing an alcohol use disorder later in adulthood.

Acknowledgments

This work was supported in part by the National Institutes of Health, National Institute on Alcoholism and Alcohol 
Abuse (AA019767, AA011605, AA007573, and AA021040), the Neurobiology of Adolescent Drinking in 
Adulthood (NADIA [AA020023, AA020024, and AA020022]), and the Bowles Center for Alcohol Studies. The 
authors thank Diana Lotito for help with preparation of the manuscript.

References

Alaux-Cantin S, Warnault V, Legastelois R, Botia B, Pierrefiche O, Vilpoux C, Naassila M. Alcohol 
intoxications during adolescence increase motivation for alcohol in adult rats and induce 
neuroadaptations in the nucleus accumbens. Neuropharmacology. 2013; 67:521–531. [PubMed: 
23287538] 

Ang ET, Wong PT, Moochhala S, Ng YK. Cytokine changes in the horizontal diagonal band of Broca 
in the septum after running and stroke: a correlation to glial activation. Neuroscience. 2004; 
129:337–347. [PubMed: 15501591] 

Bach H, Arango V, Kassir SA, Tsaava T, Dwork AJ, Mann JJ, Underwood MD. Alcoholics have more 
tryptophan hydroxylase 2 mRNA and protein in the dorsal and median raphe nuclei. Alcohol Clin 
Exp Res. 2014; 38:1894–1901. [PubMed: 24942188] 

Baker KG, Halliday GM, Kril JJ, Harper CG. Chronic alcoholics without Wernicke-Korsakoff 
syndrome or cirrhosis do not lose serotonergic neurons in the dorsal raphe nucleus. Alcohol Clin 
Exp Res. 1996; 20:61–66. [PubMed: 8651464] 

Barr CS, Schwandt ML, Newman TK, Higley JD. The use of adolescent nonhuman primates to model 
human alcohol intake: neurobiological, genetic, and psychological variables. Ann N Y Acad Sci. 
2004; 1021:221–233. [PubMed: 15251892] 

Beynon SB, Walker FR. Microglial activation in the injured and healthy brain: what are we really 
talking about? Practical and theoretical issues associated with the measurement of changes in 
microglial morphology. Neuroscience. 2012; 225:162–171. [PubMed: 22824429] 

Chennaoui M, Gomez-Merino D, Drogou C, Geoffroy H, Dispersyn G, Langrume C, Ciret S, Gallopin 
T, Sauvet F. Effects of exercise on brain and peripheral inflammatory biomarkers induced by total 
sleep deprivation in rats. J Inflamm (Lond). 2015; 12:56. [PubMed: 26425116] 

Coleman LG Jr, He J, Lee J, Styner M, Crews FT. Adolescent binge drinking alters adult brain 
neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice. 
Alcoholism, clinical and experimental research. 2011; 35:671–688.

Coppen AJ, Doogan DP. Serotonin and its place in the pathogenesis of depression. J Clin Psychiatry. 
1988; 49(Suppl):4–11.

Crews FT, Bechara R, Brown LA, Guidot DM, Mandrekar P, Oak S, Qin L, Szabo G, Wheeler M, Zou 
J. Cytokines and alcohol. Alcohol Clin Exp Res. 2006; 30:720–730. [PubMed: 16573591] 

Crews FT, Boettiger CA. Impulsivity, frontal lobes and risk for addiction. Pharmacology, biochemistry, 
and behavior. 2009; 93:237–247.

Crews FT, Braun CJ, Hoplight B, Switzer RC 3rd, Knapp DJ. Binge ethanol consumption causes 
differential brain damage in young adolescent rats compared with adult rats. Alcoholism, clinical 
and experimental research. 2000; 24:1712–1723.

Crews FT, Nixon K, Wilkie ME. Exercise reverses ethanol inhibition of neural stem cell proliferation. 
Alcohol. 2004; 33:63–71. [PubMed: 15353174] 

Crews FT, Qin L, Sheedy D, Vetreno RP, Zou J. High mobility group box 1/Toll-like receptor danger 
signaling increases brain neuroimmune activation in alcohol dependence. Biol Psychiatry. 2013; 
73:602–612. [PubMed: 23206318] 

Vetreno et al. Page 14

Brain Behav Immun. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Crews FT, Vetreno RP. Neuroimmune basis of alcoholic brain damage. Int Rev Neurobiol. 2014; 
118:315–357. [PubMed: 25175868] 

Crews FT, Vetreno RP. Mechanisms of neuroimmune gene induction in alcoholism. 
Psychopharmacology (Berl). 2015

Crews FT, Vetreno RP, Broadwater MA, Robinson DL. Adolescent alcohol exposure persistently 
impacts adult neurobiology and behavior. Pharmacological Reviews. In Press. 

Crews FT, Zou J, Qin L. Induction of innate immune genes in brain create the neurobiology of 
addiction. Brain Behav Immun. 2011; 25(Suppl 1):S4–S12. [PubMed: 21402143] 

Criado JR, Wills DN, Walker BM, Ehlers CL. Effects of adolescent ethanol exposure on sleep in adult 
rats. Alcohol. 2008; 42:631–639. [PubMed: 18922666] 

Cui C, Noronha A, Warren KR, Koob GF, Sinha R, Thakkar M, Matochik J, Crews FT, Chandler LJ, 
Pfefferbaum A, Becker HC, Lovinger D, Everitt BJ, Egli M, Mandyam CD, Fein G, Potenza MN, 
Harris RA, Grant KA, Roberto M, Meyerhoff DJ, Sullivan EV. Brain pathways to recovery from 
alcohol dependence. Alcohol. 2015; 49:435–452. [PubMed: 26074423] 

Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and 
depression: when the immune system subjugates the brain. Nature reviews Neuroscience. 2008; 
9:46–56. [PubMed: 18073775] 

Dori I, Dinopoulos A, Blue ME, Parnavelas JG. Regional differences in the ontogeny of the 
serotonergic projection to the cerebral cortex. Exp Neurol. 1996; 138:1–14. [PubMed: 8593886] 

Ehlers CL, Criado JR, Wills DN, Liu W, Crews FT. Periadolescent ethanol exposure reduces adult 
forebrain ChAT+IR neurons: correlation with behavioral pathology. Neuroscience. 2011; 199:333–
345. [PubMed: 22033458] 

Evrard SG, Duhalde-Vega M, Tagliaferro P, Mirochnic S, Caltana LR, Brusco A. A low chronic 
ethanol exposure induces morphological changes in the adolescent rat brain that are not fully 
recovered even after a long abstinence: an immunohistochemical study. Exp Neurol. 2006; 
200:438–459. [PubMed: 16631170] 

Gartside SE, McQuade R, Sharp T. Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) 
on 5-HT cell firing and release: comparison between dorsal and median raphe 5-HT systems. 
Neuropharmacology. 1997; 36:1697–1703. [PubMed: 9517441] 

Gass JT, Glen WB Jr, McGonigal JT, Trantham-Davidson H, Lopez MF, Randall PK, Yaxley R, 
Floresco SB, Chandler LJ. Adolescent Alcohol Exposure Reduces Behavioral Flexibility, 
Promotes Disinhibition, and Increases Resistance to Extinction of Ethanol Self-Administration in 
Adulthood. Neuropsychopharmacology : official publication of the American College of 
Neuropsychopharmacology. 2014; 39:2570–2583. [PubMed: 24820536] 

He J, Crews FT. Increased MCP-1 and microglia in various regions of the human alcoholic brain. 
Experimental neurology. 2008; 210:349–358. [PubMed: 18190912] 

Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev 
Immunol. 2014; 14:463–477. [PubMed: 24962261] 

Hochstrasser T, Ullrich C, Sperner-Unterweger B, Humpel C. Inflammatory stimuli reduce survival of 
serotonergic neurons and induce neuronal expression of indoleamine 2,3-dioxygenase in rat dorsal 
raphe nucleus organotypic brain slices. Neuroscience. 2011; 184:128–138. [PubMed: 21501664] 

Johnston, LD.; O’Malley, PM.; Bachman, JG.; Schulenberg, JE. Monitoring the Future National 
Results on drug use: 2012 Overview, Key Findings on Adolescent Drug Use. Institute for Social 
Research, The University of Michigan; Ann Arbor: 2013. 

Karkkainen O, Laukkanen V, Haukijarvi T, Kautiainen H, Tiihonen J, Storvik M. Lower 
[3H]Citalopram binding in brain areas related to social cognition in alcoholics. Alcohol Alcohol. 
2015; 50:46–50. [PubMed: 25349244] 

Kelley KW, Dantzer R. Alcoholism and inflammation: neuroimmunology of behavioral and mood 
disorders. Brain, behavior, and immunity. 2011; 25(Suppl 1):S13–20.

Kenna GA. Medications acting on the serotonergic system for the treatment of alcohol dependent 
patients. Curr Pharm Des. 2010; 16:2126–2135. [PubMed: 20482508] 

Kosofsky BE, Molliver ME. The serotoninergic innervation of cerebral cortex: different classes of 
axon terminals arise from dorsal and median raphe nuclei. Synapse. 1987; 1:153–168. [PubMed: 
2463687] 

Vetreno et al. Page 15

Brain Behav Immun. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lauder JM. Ontogeny of the serotonergic system in the rat: serotonin as a developmental signal. Ann N 
Y Acad Sci. 1990; 600:297–313. discussion 314. [PubMed: 2252317] 

Lauder JM, Bloom FE. Ontogeny of monoamine neurons in the locus coeruleus, Raphe nuclei and 
substantia nigra of the rat. I. Cell differentiation. J Comp Neurol. 1974; 155:469–481. [PubMed: 
4847734] 

Lauder JM, Petrusz P, Wallace JA, Dinome A, Wilkie MB, McCarthy K. Combined serotonin 
immunocytochemistry and 3H-thymidine autoradiography: in vivo and in vitro methods. J 
Histochem Cytochem. 1982; 30:788–793. [PubMed: 6749972] 

Leasure JL, Decker L. Social isolation prevents exercise-induced proliferation of hippocampal 
progenitor cells in female rats. Hippocampus. 2009; 19:907–912. [PubMed: 19235230] 

LeMarquand D, Pihl RO, Benkelfat C. Serotonin and alcohol intake, abuse, and dependence: clinical 
evidence. Biol Psychiatry. 1994a; 36:326–337. [PubMed: 7993959] 

LeMarquand D, Pihl RO, Benkelfat C. Serotonin and alcohol intake, abuse, and dependence: findings 
of animal studies. Biol Psychiatry. 1994b; 36:395–421. [PubMed: 7803601] 

Lidov HG, Molliver ME. An immunohistochemical study of serotonin neuron development in the rat: 
ascending pathways and terminal fields. Brain Res Bull. 1982; 8:389–430. [PubMed: 6178481] 

Linnoila M, Virkkunen M, George T, Eckardt M, Higley JD, Nielsen D, Goldman D. Serotonin, violent 
behavior and alcohol. EXS. 1994; 71:155–163. [PubMed: 7518265] 

Loizou LA. The postnatal ontogeny of monoamine-containing neurones in the central nervous system 
of the albino rat. Brain Res. 1972; 40:395–418. [PubMed: 4537284] 

Ma Y, He M, Qiang L. Exercise Therapy Downregulates the Overexpression of TLR4, TLR2, MyD88 
and NF-kappaB after Cerebral Ischemia in Rats. Int J Mol Sci. 2013; 14:3718–3733. [PubMed: 
23434667] 

Marshall SA, McClain JA, Kelso ML, Hopkins DM, Pauly JR, Nixon K. Microglial activation is not 
equivalent to neuroinflammation in alcohol-induced neurodegeneration: The importance of 
microglia phenotype. Neurobiology of disease. 2013; 54:239–251. [PubMed: 23313316] 

Martin SA, Dantzer R, Kelley KW, Woods JA. Voluntary wheel running does not affect 
lipopolysaccharide-induced depressive-like behavior in young adult and aged mice. 
Neuroimmunomodulation. 2014; 21:52–63. [PubMed: 24281669] 

Martin SA, Pence BD, Greene RM, Johnson SJ, Dantzer R, Kelley KW, Woods JA. Effects of 
voluntary wheel running on LPS-induced sickness behavior in aged mice. Brain Behav Immun. 
2013; 29:113–123. [PubMed: 23277090] 

McClain JA, Morris SA, Deeny MA, Marshall SA, Hayes DM, Kiser ZM, Nixon K. Adolescent binge 
alcohol exposure induces long-lasting partial activation of microglia. Brain, behavior, and 
immunity. 2011; 25(Suppl 1):S120–128.

McClintick JN, McBride WJ, Bell RL, Ding ZM, Liu Y, Xuei X, Edenberg HJ. Gene expression 
changes in serotonin, GABA-A receptors, neuropeptides and ion channels in the dorsal raphe 
nucleus of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking. Pharmacol 
Biochem Behav. 2015; 129:87–96. [PubMed: 25542586] 

Michelsen KA, Schmitz C, Steinbusch HW. The dorsal raphe nucleus--from silver stainings to a role in 
depression. Brain Res Rev. 2007; 55:329–342. [PubMed: 17316819] 

Muller CP, Homberg JR. The role of serotonin in drug use and addiction. Behav Brain Res. 2015; 
277:146–192. [PubMed: 24769172] 

Nakamura K, Sugawara Y, Sawabe K, Ohashi A, Tsurui H, Xiu Y, Ohtsuji M, Lin QS, Nishimura H, 
Hasegawa H, Hirose S. Late developmental stage-specific role of tryptophan hydroxylase 1 in 
brain serotonin levels. J Neurosci. 2006; 26:530–534. [PubMed: 16407550] 

Nautiyal KM, Tanaka KF, Barr MM, Tritschler L, Le Dantec Y, David DJ, Gardier AM, Blanco C, Hen 
R, Ahmari SE. Distinct Circuits Underlie the Effects of 5-HT1B Receptors on Aggression and 
Impulsivity. Neuron. 2015; 86:813–826. [PubMed: 25892302] 

O’Hearn E, Battaglia G, De Souza EB, Kuhar MJ, Molliver ME. Methylenedioxyamphetamine (MDA) 
and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon 
terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci. 1988; 8:2788–
2803. [PubMed: 2457659] 

Vetreno et al. Page 16

Brain Behav Immun. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pandey SC, Sakharkar AJ, Tang L, Zhang H. Potential role of adolescent alcohol exposure-induced 
amygdaloid histone modifications in anxiety and alcohol intake during adulthood. Neurobiol Dis. 
2015; 82:607– 619. [PubMed: 25814047] 

Pascual M, Boix J, Felipo V, Guerri C. Repeated alcohol administration during adolescence causes 
changes in the mesolimbic dopaminergic and glutamatergic systems and promotes alcohol intake 
in the adult rat. J Neurochem. 2009; 108:920–931. [PubMed: 19077056] 

Pascual M, Pla A, Minarro J, Guerri C. Neuroimmune activation and myelin changes in adolescent rats 
exposed to high-dose alcohol and associated cognitive dysfunction: a review with reference to 
human adolescent drinking. Alcohol and alcoholism. 2014; 49:187–192. [PubMed: 24217958] 

Paxinos, G.; Watson, C. The rat brain in stereotaxic coordinates. Academic Press; San Diego, CA: 
1998. 

Qin L, He J, Hanes RN, Pluzarev O, Hong JS, Crews FT. Increased systemic and brain cytokine 
production and neuroinflammation by endotoxin following ethanol treatment. Journal of 
neuroinflammation. 2008; 5:10. [PubMed: 18348728] 

Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT. Systemic LPS causes 
chronic neuroinflammation and progressive neurodegeneration. Glia. 2007; 55:453–462. [PubMed: 
17203472] 

Sakharkar AJ, Tang L, Zhang H, Chen Y, Grayson DR, Pandey SC. Effects of acute ethanol exposure 
on anxiety measures and epigenetic modifiers in the extended amygdala of adolescent rats. Int J 
Neuropsychopharmacol. 2014; 17:2057–2067. [PubMed: 24968059] 

Sher KJ, Gotham HJ. Pathological alcohol involvement: a developmental disorder of young adulthood. 
Development and psychopathology. 1999; 11:933–956. [PubMed: 10624733] 

Shoval G, Bar-Shira O, Zalsman G, John Mann J, Chechik G. Transitions in the transcriptome of the 
serotonergic and dopaminergic systems in the human brain during adolescence. Eur 
Neuropsychopharmacol. 2014; 24:1123–1132. [PubMed: 24721318] 

Slawecki CJ, Thorsell A, Ehlers CL. Long-term neurobehavioral effects of alcohol or nicotine 
exposure in adolescent animal models. Ann N Y Acad Sci. 2004; 1021:448–452. [PubMed: 
15251927] 

Spear LP. The adolescent brain and age-related behavioral manifestations. Neuroscience and 
biobehavioral reviews. 2000; 24:417–463. [PubMed: 10817843] 

Spear LP. Rewards, aversions and affect in adolescence: emerging convergences across laboratory 
animal and human data. Developmental cognitive neuroscience. 2011; 1:392–400. [PubMed: 
21918675] 

Spear LP, Swartzwelder HS. Adolescent alcohol exposure and persistence of adolescent-typical 
phenotypes into adulthood: a mini-review. Neurosci Biobehav Rev. 2014; 45:1–8. [PubMed: 
24813805] 

Stranahan AM, Khalil D, Gould E. Social isolation delays the positive effects of running on adult 
neurogenesis. Nat Neurosci. 2006; 9:526–533. [PubMed: 16531997] 

Tagliaferro P, Ramos AJ, Lopez EM, Pecci Saavedra J, Brusco A. Neural and astroglial effects of a 
chronic parachlorophenylalanine-induced serotonin synthesis inhibition. Mol Chem Neuropathol. 
1997; 32:195–211. [PubMed: 9437667] 

Underwood MD, Mann JJ, Arango V. Morphometry of dorsal raphe nucleus serotonergic neurons in 
alcoholism. Alcohol Clin Exp Res. 2007; 31:837–845. [PubMed: 17378916] 

Vetreno RP, Crews FT. Adolescent binge drinking increases expression of the danger signal receptor 
agonist HMGB1 and Toll-like receptors in the adult prefrontal cortex. Neuroscience. 2012; 
226:475–488. [PubMed: 22986167] 

Vetreno RP, Crews FT. Binge ethanol exposure during adolescence leads to a persistent loss of 
neurogenesis in the dorsal and ventral hippocampus that is associated with impaired adult 
cognitive functioning. Front Neurosci. 2015; 9:35. [PubMed: 25729346] 

Vetreno RP, Qin L, Crews FT. Increased receptor for advanced glycation end product expression in the 
human alcoholic prefrontal cortex is linked to adolescent drinking. Neurobiol Dis. 2013; 59:52–62. 
[PubMed: 23867237] 

Vetreno et al. Page 17

Brain Behav Immun. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vetreno RP, Yaxley R, Paniagua B, Crews FT. Diffusion tensor imaging reveals adolescent binge 
ethanol-induced brain structural integrity alterations in adult rats that correlate with behavioral 
dysfunction. Addict Biol. 2015:1–15. [PubMed: 25403107] 

Virkkunen M, Goldman D, Linnoila M. Serotonin in alcoholic violent offenders. Ciba Found Symp. 
1996; 194:168–177. discussion 177–182. [PubMed: 8862876] 

Walker AK, Kavelaars A, Heijnen CJ, Dantzer R. Neuroinflammation and comorbidity of pain and 
depression. Pharmacol Rev. 2014; 66:80–101. [PubMed: 24335193] 

Wang S, Yan JY, Lo YK, Carvey PM, Ling Z. Dopaminergic and serotoninergic deficiencies in young 
adult rats prenatally exposed to the bacterial lipopolysaccharide. Brain Res. 2009; 1265:196–204. 
[PubMed: 19236855] 

Weir JM, Zakama A, Rao U. Developmental risk I: depression and the developing brain. Child Adolesc 
Psychiatr Clin N Am. 2012; 21:237–259. vii. [PubMed: 22537725] 

White AM, Kraus CL, Swartzwelder H. Many college freshmen drink at levels far beyond the binge 
threshold. Alcoholism, clinical and experimental research. 2006; 30:1006–1010.

Windle M, Spear LP, Fuligni AJ, Angold A, Brown JD, Pine D, Smith GT, Giedd J, Dahl RE. 
Transitions into underage and problem drinking: developmental processes and mechanisms 
between 10 and 15 years of age. Pediatrics. 2008; 121(Suppl 4):S273–289. [PubMed: 18381494] 

Wrase J, Reimold M, Puls I, Kienast T, Heinz A. Serotonergic dysfunction: brain imaging and 
behavioral correlates. Cogn Affect Behav Neurosci. 2006; 6:53–61. [PubMed: 16869229] 

Xu Z, Seidler FJ, Ali SF, Slikker W Jr, Slotkin TA. Fetal and adolescent nicotine administration: 
effects on CNS serotonergic systems. Brain Res. 2001; 914:166–178. [PubMed: 11578609] 

Vetreno et al. Page 18

Brain Behav Immun. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• AIE reduces adult raphe TPH2, VMAT2, and 5-HT+IR neurons

• AIE increases innate immune marker expression in the adult raphe 

nucleus

• LPS increases immune marker expression and mimics AIE loss of 5-

HT neurons

• Exercise prevents AIE immune expression and0loss of 5-HT neurons
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Figure 1. Graphical representation of the adolescent intermittent ethanol (AIE) exposure 
paradigm
(A) Rats were treated from postnatal day (P) 25 to P55 with either a single daily dose of 

ethanol (AIE; 5.0 g/kg 20% ethanol w/v, i.g.) or a comparable volume of water (CON) on a 

two-day on/two-day off administration schedule. Blood ethanol concentrations (BEC) were 

measured one hr after ethanol exposure on P38 and P54. Twenty-four hours (P56; CON = 8, 

AIE = 8), 25 days (P80; CON = 8, AIE = 8), and 165 days (P220; CON = 7, AIE = 7) 

following the conclusion of AIE, rats were sacrificed for immunohistochemistry and 

Western blot analysis (P80). A subset of CON- and AIE-treated animals was treated with 

lipopolysaccharide (LPS; 1.0 mg kg, i.p., CON = 8, AIE = 8) or saline (SAL; CON = 8, AIE 

= 8) on P70 and sacrificed on P80. An additional subset of CON- and AIE-treated animals 

was exposed to voluntary wheel running from P24 to P80 and sacrificed on P80 (No 

Exercise: CON = 8, AIE = 8; Exercise: CON = 9, AIE = 10). Body weights were assessed at 

the initiation of AIE (P25), the conclusion of AIE (P55), and the conclusion of each 

experiment, depending on the endpoint. Across experiments, we observed that all subjects 

evidence dramatic weight gains (main effect of Age: Exercise study, F[2,62] = 5152.9, p < 

0.01; LPS study, F[2,54] = 4203.5, p < 0.01; Aging study: P56, F[1,14] = 3926.4, p < 0.01; 

P80, F[2,28] = 4434.8, p < 0.01; P220, F[2,24] = 1553.9, p < 0.01). Further, there were no 

differences in body weights across treatments and conditions (Exercise study: main effect of 

Treatment - F[1,31] = 0.9, p > 0.05; main effect of exercise - F[1,31] = 1.1, p > 0.05; LPS 

study: main effect of Treatment - F[1,28] = 1.8, p > 0.05; main effect of LPS - F[1,28] = 0.01, 

p > 0.05; Aging study: P56 - main effect of Treatment: F[1,14] = 1.4, p > 0.05; P80 - main 

effect of Treatment: F[1,14] = 0.03, p > 0.05) with the exception of the P220 study in which 

we observed that AIE-treated animals weighed approximately 10% less than CON subjects 

at P220 (CON = 622 ± 18 g, AIE = 553 ± 17 g [one-way ANOVA: F[1,12] = 7.9, p < 0.05]). 

(B) Representative photomicrographs based on the atlas of Paxinos and Watson (1998) 

defining the regions of interest assessed for serotonin terminal field immunoreactivity. PrL: 

prelimbic cortex; HTH: hypothalamus; AMY: amygdala. (C) Representative 

photomicrograph depicting the brain regions dissected for Western blot analysis. The frontal 

cortex and midbrain were dissected and used for Western blot analysis of serotonergic 

protein expression. (all p’s < 0.05) that did not differ as a function of treatment during AIE 

exposure (repeated measures ANOVAs: all p’s > 0.9; see Figure 1A). However, AIE-treated 
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animals weighed approximately 10% less than CON subjects at P220 (CON = 622 ± 18 g, 

AIE = 553 ± 17 g [one-way ANOVA: p < 0.05]).
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Figure 2. Adolescent intermittent ethanol (AIE) exposure leads to long-term reductions of 
serotonin-immunoreactive (5-HT+IR) cells in the dorsal raphe nucleus (DRN)
Left Modified unbiased stereological assessment revealed a 27% (±6%) (CON = 8, AIE = 8; 

one-way ANOVA: F[1,14] = 9.3, p < 0.01) decrease of 5-HT+IR in the adolescent (postnatal 

[P]56) DRN that persisted from young adulthood (P80 [20% ±5%]) (CON = 8, AIE = 8; 

one-way ANOVA: F[1,15] = 10.0, p < 0.01) into adulthood (P220 [16% ±1%]) (CON = 7, 

AIE = 7; one-way ANOVA: F[1,12] = 5.4, p < 0.05), relative to controls (CON). Further, 

across aging from P80 to P220 in CON subjects, we observed a 29% reduction in 5-HT+IR 

neurons in the DRN (one-way ANOVA: F[2,22] = 7.7, p < 0.01). (Inset) Modified unbiased 

stereological assessment revealed that 5-HT+IR did not differ between the naïve 

unmanipulated control group (NC; n = 8) and CON subjects (one-way ANOVA: F[1,14] = 

0.009, p = 0.93). Post-hoc analysis revealed that 5-HT+IR was reduced by (19% [±5%]; p < 

0.05) in AIE-treated animals relative to NC animals. Data are presented as mean ± SEM. * p 
< 0.05, ** p < 0.01, relative to CON rats. Right Photomicrograph images representing 

anterior to posterior sections within the DRN based on the atlas of Paxinos and Watson 

(1998). Scale bar = 50 microns. Note that 5-HT+IR neurons are clustered on the midline of 

the anterior DRN and extend laterally toward the posterior DRN.
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Figure 3. Adolescent binge ethanol (AIE) treatment reduces serotonin-immunoreactive (5-HT
+IR) terminal field densities in the hypothalamus and amygdala of young adult rats
(A) Quantification of pixel density in the hypothalamus of AIE-treated animals revealed a 

38% (±7%) (CON = 8, AIE = 7; one-way ANOVA: F[1,13] = 4.7, p = 0.05) reduction of 5-

HT+IR terminal field densities, relative to controls (CON). (B) Quantification of pixel 

density in the AIE-treated animals revealed a 20% (±7%) (CON = 8, AIE = 8; one-way 

ANOVA: F[1,14] = 4.7, p = 0.05) reduction of 5-HT+IR terminal field densities in the 

amygdala, relative to CONs. (C) Quantification of pixel density in the AIE-treated animals 

revealed a 112% (±31%) (CON = 8, AIE = 7; one-way ANOVA: F[1,13] = 19.4, p < 0.01) 

increase of 5-HT+IR terminal field densities in the prelimbic, relative to CONs. Data are 

presented as mean ± SEM. * indicates a p < 0.05, ** p < 0.01, relative to CONs.
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Figure 4. Adolescent intermittent ethanol (AIE) exposure reduces tryptophan hydroxylase 2 
(TPH2) and vesicular monoamine transporter 2 (VMAT2) expression in the young adult (P80) 
midbrain
(A) Western blot assessment of TPH2 protein expression revealed a significant 21% (±6%) 

(CON = 7, AIE = 7; one-way ANOVA: F[1,12] = 5.4, p < 0.05) reduction in AIE-treated 

animals, relative to controls (CON). (B) Western blot assessment of serotonin transporter 

(SERT) expression revealed an insignificant reduction following AIE treatment in young 

adulthood (CON = 7, AIE = 7; one-way ANOVA: F[1,12] = 5.4, p < 0.05). (C) Western blot 

assessment of VMAT2 protein expression revealed a significant 24% (±5%) (CON = 7, AIE 

= 7; one-way ANOVA: F[1,12] = 5.4, p < 0.05) reduction in AIE-treated animals, relative to 

CONs. Western blot analyses were run in triplicate and the mean was reported. The 

representative immunoblots are contiguous and obtained from the same gels. Data are 

presented as mean ± SEM. * indicates a p < 0.05, relative to CONs.
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Figure 5. Adolescent intermittent ethanol (AIE) exposure increases the population and partial 
activation of microglia in the young adult (P80) dorsal raphe nucleus (DRN)
(A) Modified unbiased stereological assessment revealed that AIE treatment led to a 27% 

(±3%) (CON = 8, AIE = 8; one-way ANOVA: F[1,14] = 54.1, p < 0.01) increase in the 

population of Iba-1+IR microglia in the young adult (P80), relative to controls (CON). 

Representative photomicrographs of Iba-1+IR in the DRN from CON- and AIE-exposed 

animals. (B) Quantification of CD11b pixel density in the young adult following AIE 

revealed a 99% (±26%) (CON = 8, AIE = 8; one-way ANOVA: F[1,14] = 8.1, p < 0.05) 

increase in the partial activation of microglia, relative to CONs. Representative 

photomicrographs of CD11b+IR in the DRN from CON- and AIE-exposed animals. (C) 

Representative photomicrographs of ED1+IR in the DRN from CON- and AIE-exposed 

animals. Expression of ED1 was unaffected by AIE treatment in the young adult DRN. Aq; 

Cerebral aqueduct. Scale bar = 50 microns; scale bar inset = 10 microns. Data are presented 

as mean ± SEM. * p < 0.05, ** p < 0.01, relative to CON rats.

Vetreno et al. Page 25

Brain Behav Immun. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Exposure to lipopolysaccharide (LPS) mimics the loss of serotonin-immunoreactive (5-
HT+IR) cells associated with adolescent intermittent ethanol (AIE) exposure in the dorsal raphe 
nucleus (DRN)
Modified unbiased stereological assessment of 5-HT+IR cells in the DRN of young adult 

rats revealed a significant reduction of 5-HT+IR neurons in AIE/saline (SAL)- (20% ±5%; n 

= 8), CON/LPS- (20% ±5%; n = 8), and AIE/LPS-exposed (20% ±5%; n = 8) rats, relative 

to CON/SAL (n = 8). Data are presented as mean ± SEM. * p < 0.05, ** p < 0.01, relative to 

CON/SAL rats.
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Figure 7. Voluntary exercise exposure prevents the adolescent intermittent ethanol (AIE)-
induced loss of serotonin-immunoreactive (5-HT+IR) cells in the young adult (P80) dorsal raphe 
nucleus (DRN)
Modified unbiased stereological assessment of 5-HT+IR cells in the DRN of young adult 

rats in the no exercise condition revealed a significant (14% ± 3%) (CON/No exercise = 8, 

CON/Exercise = 9, AIE/No exercise = 8, AIE/Exercise = 10) reduction in the AIE-treated 

animals, relative to controls (CON). Interestingly, subjects in the AIE treatment group that 

were exposed to exercise in the form of voluntary wheel running from P24 to P80 did not 

evidence the observed loss of 5-HT+IR cells (one-way ANOVA; F[1,16] = 10.8, p < 0.01). 

Data are presented as mean ± SEM. * p < 0.05, relative to CON/No exercise rats.
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Figure 8. Voluntary exercise exposure prevents adolescent intermittent ethanol (AIE)-induced 
increased population and partial activation of microglia in the young adult (P80) dorsal raphe 
nucleus (DRN)
A) Modified unbiased stereological assessment of Iba-1+IR cells in the DRN of young adult 

rats in the no exercise condition revealed a significant (20% ±6%) (CON/No exercise = 8, 

CON/Exercise = 9, AIE/No exercise = 8, AIE/Exercise = 10) increase in the AIE-treated 

animals, relative to controls (CON). Exercise-exposed AIE-treated subjects did not evidence 

an increase in Iba-1+IR microglia when compared to non-exercising CON-treated subjects. * 

p < 0.05, relative to CON/No exercise rats. (B) Quantification of CD11b pixel density in the 

DRN from young adult rats in the no exercise condition revealed a significant 38% (±4%) 

increase in the AIE-treated animals, relative to controls (CON). While the exercising AIE-

treated animals did not differ from the non-exercising CON subjects, there was a 40% (±4%) 

reduction of CD11b+IR in the exercising CONs, relative to non-exercising CONs. Data are 

presented as mean ± SEM. ** p < 0.01, relative to CON/No exercise rats.
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Figure 9. Lipopolysaccharide (LPS) mimics and voluntary exercise prevents adolescent 
intermittent ethanol (AIE)-induced increased expression of pNF-κBp65 in the young adult (P80) 
dorsal raphe nucleus (DRN)
(A) Modified unbiased stereological assessment of phosphorylated nuclear factor kappa-

light-chain-enhancer of activated B cells p65 (pNF-κB p65)+IR cells in the DRN of young 

adult rats revealed a significant increase in AIE/saline (SAL)- (73% ±19%; n = 8), CON/

LPS- (69% ±21%; n = 8), and AIE/LPS-exposed (96% ±31%; n = 8) rats, relative to SAL-

treated controls (n = 7). (B) Modified unbiased stereological assessment in the DRN of 

young adult rats revealed a significant 61% (±12%) (CON+No exercise = 8, CON+Exercise 

= 8, AIE+No exercise = 8, AIE+Exercise = 8) increase in pNF-κB p65+IR cells in the non-

exercise AIE-treated animals, relative to non-exercising CONs. Importantly, voluntary 

exercise exposure prevents the AIE-induced increase in pNF-κB p65+IR in the young adult 

DRN. Further, expression of pNF-κB p65+IR between control groups in Figure A and B did 

not differ statistically (one-way ANOVA: F[1,13] = 1.6, p > 0.05). Data are presented as mean 

± SEM. * p < 0.05, relative to CON/SAL rats. Scale bar = 50 micron.
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Figure 10. Proposed mechanism of adolescent intermittent ethanol (AIE)-induced serotonergic 
system deficits
Adolescent intermittent ethanol led to a persistent reduction of serotonergic neurons in the 

dorsal raphe nucleus (DRN). This was accompanied by decreased levels of tryptophan 

hydroxylase 2 (TPH2), the rate-limiting enzyme in serotonin (5-HT) synthesis, decreased 

vesicular monoamine transporter 2 (VMAT2), a vesicular transporter of 5-HT, and decreases 

serotonergic axon terminal fields in the hypothalamus and amygdala. Lipopolysaccharide 

(LPS) mimicked the AIE-induced serotonergic neuron reduction and increase in 

phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells p65 (pNF-κB 

p65)+IR in the DRN, suggesting a possible innate immune mechanism of AIE-induced 

serotonergic neuron loss. Indeed, AIE increases microglial cell number and the CD11b 

marker of microglial activation in the DRN. Voluntary exercise prevented the loss of 

serotonergic neurons, and increases in microglial cell number and activation as well as 

expression of pNF-κB p65. These observations are consistent with AIE causing microglial 

proliferation/activation and innate immune activation that in turn contributes to the 

serotonergic neuron loss.
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