26,315 research outputs found

    A stacking method to study the gamma-ray emission of source samples based on the co-adding of Fermi LAT count maps

    Full text link
    We present a stacking method that makes use of co-added maps of gamma-ray counts produced from data taken with the Fermi Large Area Telescope. Sources with low integrated gamma-ray fluxes that are not detected individually may become detectable when their corresponding count maps are added. The combined data set is analyzed with a maximum likelihood method taking into account the contribution from point-like and diffuse background sources. For both simulated and real data, detection significance and integrated gamma-ray flux are investigated for different numbers of stacked sources using the public Fermi Science Tools for analysis and data preparation. The co-adding is done such that potential source signals add constructively, in contrast to the signals from background sources, which allows the stacked data to be described with simply structured models. We show, for different scenarios, that the stacking method can be used to increase the cumulative significance of a sample of sources and to characterize the corresponding gamma-ray emission. The method can, for instance, help to search for gamma-ray emission from galaxy clusters.Comment: accepted for publication in Astronomy & Astrophysics, 10 pages, 12 figure

    Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck

    Get PDF
    The Planck mission detected thousands of extragalactic radio sources at frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense that it is based on the satellite's annual motion around the Sun and the temperature of the cosmic microwave background), and its beams are well characterized at sub-percent levels. Thus Planck's flux density measurements of compact sources are absolute in the same sense. We have made coordinated VLA and ATCA observations of 65 strong, unresolved Planck sources in order to transfer Planck's calibration to ground-based instruments at 22, 28, and 43 GHz. The results are compared to microwave flux density scales currently based on planetary observations. Despite the scatter introduced by the variability of many of the sources, the flux density scales are determined to 1-2% accuracy. At 28 GHz, the flux density scale used by the VLA runs 3.6% +- 1.0% below Planck values; at 43 GHz, the discrepancy increases to 6.2% +- 1.4% for both ATCA and the VLA.Comment: 16 pages, 4 figures and 4 table

    Revisiting the Parallax of the Isolated Neutron Star RX J185635-3754 Using HST/ACS Imaging

    Full text link
    We have redetermined the parallax and proper motion of the nearby isolated neutron star RX~J185635-3754. We used eight observations with the high resolution camera of the HST/ACS taken from 2002 through 2004. We performed the astrometric fitting using five independent methods, all of which yielded consistent results. The mean estimate of the distance is 123 (+11, -15) pc (1 sigma), in good agreement with our earlier published determination

    Degradation of Chloroaromatics: Purification and Characterization of a Novel Type of Chlorocatechol 2,3-Dioxygenase of Pseudomonas putida GJ31

    Get PDF
    A purification procedure for a new kind of extradiol dioxygenase, termed chlorocatechol 2,3-dioxygenase, that converts 3-chlorocatechol productively was developed. Structural and kinetic properties of the enzyme, which is part of the degradative pathway used for growth of Pseudomonas putida GJ31 with chlorobenzene, were investigated. The enzyme has a subunit molecular mass of 33.4 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Estimation of the native Mr value under nondenaturating conditions by gel filtration gave a molecular mass of 135 ± 10 kDa, indicating a homotetrameric enzyme structure (4 × 33.4 kDa). The pI of the enzyme was estimated to be 7.1 ± 0.1. The N-terminal amino acid sequence (43 residues) of the enzyme was determined and exhibits 70 to 42% identity with other extradiol dioxygenases. Fe(II) seems to be a cofactor of the enzyme, as it is for other catechol 2,3-dioxygenases. In contrast to other extradiol dioxygenases, the enzyme exhibited great sensitivity to temperatures above 40°C. The reactivity of this enzyme toward various substituted catechols, especially 3-chlorocatechol, was different from that observed for other catechol 2,3-dioxygenases. Stoichiometric displacement of chloride occurred from 3-chlorocatechol, leading to the production of 2-hydroxymuconate.

    Stochastic stability for a model representing the intake manifold pressure of an automotive engine

    Get PDF
    The paper presents conditions to assure stochastic stability for a nonlinear model. The proposed model is used to represent the input-output dynamics of the angle of aperture of the throttle valve (input) and the manifold absolute pressure (output) in an automotive spark-ignition engine. The automotive model is second moment stable, as stated by the theoretical result—data collected from real-time experiments supports this finding.Peer ReviewedPostprint (author's final draft

    Semiclassical Theory of Inelastic Collisions II. Momentum Space Formulation

    Get PDF
    The time-dependent equations of the classical picture of inelastic collisions (classical-trajectory equations) are derived using the momentum-space semiclassical approximation. Thereby it is shown that the classical-trajectory equations remain valid in the vicinity of classical turning points provided that (a) the momentum-space semiclassical approximation is valid, (b) the trajectories for elastic scattering in the various internal states differ only slightly, and (c) the slopes of the elastic scattering potentials have the same sign. A brief review of the existing derivations of the classical-trajectory equations is given, and the general conditions for their validity are discussed

    Pre-Existing Superbubbles as the Sites of Gamma-Ray Bursts

    Get PDF
    According to recent models, gamma-ray bursts apparently explode in a wide variety of ambient densities ranging from ~ 10^{-3} to 30 cm^{-3}. The lowest density environments seem, at first sight, to be incompatible with bursts in or near molecular clouds or with dense stellar winds and hence with the association of gamma-ray bursts with massive stars. We argue that low ambient density regions naturally exist in areas of active star formation as the interiors of superbubbles. The evolution of the interior bubble density as a function of time for different assumptions about the evaporative or hydrodynamical mass loading of the bubble interior is discussed. We present a number of reasons why there should exist a large range of inferred afterglow ambient densities whether gamma-ray bursts arise in massive stars or some version of compact star coalescence. We predict that many gamma-ray bursts will be identified with X-ray bright regions of galaxies, corresponding to superbubbles, rather than with blue localized regions of star formation. Massive star progenitors are expected to have their own circumstellar winds. The lack of evidence for individual stellar winds associated with the progenitor stars for the cases with afterglows in especially low density environments may imply low wind densities and hence low mass loss rates combined with high velocities. If gamma-ray bursts are associated with massive stars, this combination might be expected for compact progenitors with atmospheres dominated by carbon, oxygen or heavier elements, that is, progenitors resembling Type Ic supernovae.Comment: 14 pages, no figures, submitted to The Astrophysical Journa
    corecore