5,194 research outputs found

    Lattice polarization effects on the screened Coulomb interaction WW of the GW approximation

    Full text link
    In polar insulators where longitudinal and transverse optical phonon modes differ substantially, the electron-phonon coupling affects the energy-band structure primarily through the long-range Fr\"ohlich contribution to the Fan term. This diagram has the same structure as the GWGW self-energy where WW originates from the electron part of the screened coulomb interaction. The two can be conveniently combined by combining electron and lattice contributions to the polarizability. Both contributions are nonanalytic at the origin, and diverge as 1/q21/q^2 so that the predominant contribution comes from a small region around q=0q{=}0. Here we adopt a simple estimate for the Fr\"ohlich contribution by assuming that the entire phonon part can be attributed to a small volume of qq near q=0q{=}0. We estimate the magnitude for q→0\mathbf{q}{\rightarrow}0 from a generalized Lyddane-Sachs-Teller relation, and the radius from the inverse of the polaron length scale. The gap correction is shown to agree with Fr\"ohlich's simple estimate −αPωL/2-\alpha_P\omega_L/2 of the polaron effect

    The mass distribution of the Fornax dSph: constraints from its globular cluster distribution

    Full text link
    Uniquely among the dwarf spheroidal (dSph) satellite galaxies of the Milky Way, Fornax hosts globular clusters. It remains a puzzle as to why dynamical friction has not yet dragged any of Fornax's five globular clusters to the centre, and also why there is no evidence that any similar star cluster has been in the past (for Fornax or any other dSph). We set up a suite of 2800 N-body simulations that sample the full range of globular-cluster orbits and mass models consistent with all existing observational constraints for Fornax. In agreement with previous work, we find that if Fornax has a large dark-matter core then its globular clusters remain close to their currently observed locations for long times. Furthermore, we find previously unreported behaviour for clusters that start inside the core region. These are pushed out of the core and gain orbital energy, a process we call 'dynamical buoyancy'. Thus a cored mass distribution in Fornax will naturally lead to a shell-like globular cluster distribution near the core radius, independent of the initial conditions. By contrast, CDM-type cusped mass distributions lead to the rapid infall of at least one cluster within \Delta t = 1-2Gyr, except when picking unlikely initial conditions for the cluster orbits (\sim 2% probability), and almost all clusters within \Delta t = 10Gyr. Alternatively, if Fornax has only a weakly cusped mass distribution, dynamical friction is much reduced. While over \Delta t = 10Gyr this still leads to the infall of 1-4 clusters from their present orbits, the infall of any cluster within \Delta t = 1-2Gyr is much less likely (with probability 0-70%, depending on \Delta t and the strength of the cusp). Such a solution to the timing problem requires that in the past the globular clusters were somewhat further from Fornax than today; they most likely did not form within Fornax, but were accreted.Comment: 12 pages, 8 figures, 3 tables, submitted to MNRA

    Structure of IL-22 Bound to Its High-Affinity IL-22R1 Chain

    Get PDF
    SummaryIL-22 is an IL-10 family cytokine that initiates innate immune responses against bacterial pathogens and contributes to immune disease. IL-22 biological activity is initiated by binding to a cell-surface complex composed of IL-22R1 and IL-10R2 receptor chains and further regulated by interactions with a soluble binding protein, IL-22BP, which shares sequence similarity with an extracellular region of IL-22R1 (sIL-22R1). IL-22R1 also pairs with the IL-20R2 chain to induce IL-20 and IL-24 signaling. To define the molecular basis of these diverse interactions, we have determined the structure of the IL-22/sIL-22R1 complex. The structure, combined with homology modeling and surface plasmon resonance studies, defines the molecular basis for the distinct affinities and specificities of IL-22 and IL-10 receptor chains that regulate cellular targeting and signal transduction to elicit effective immune responses

    The epigenetic regulator ATF7ip inhibits Il2 expression, regulating Th17 responses.

    Get PDF
    T helper 17 cells (Th17) are critical for fighting infections at mucosal surfaces; however, they have also been found to contribute to the pathogenesis of multiple autoimmune diseases and have been targeted therapeutically. Due to the role of Th17 cells in autoimmune pathogenesis, it is important to understand the factors that control Th17 development. Here we identify the activating transcription factor 7 interacting protein (ATF7ip) as a critical regulator of Th17 differentiation. Mice with T cell-specific deletion of Atf7ip have impaired Th17 differentiation secondary to the aberrant overproduction of IL-2 with T cell receptor (TCR) stimulation and are resistant to colitis in vivo. ChIP-seq studies identified ATF7ip as an inhibitor of Il2 gene expression through the deposition of the repressive histone mark H3K9me3 in the Il2-Il21 intergenic region. These results demonstrate a new epigenetic pathway by which IL-2 production is constrained, and this may open up new avenues for modulating its production

    Connecting the Milky Way potential profile to the orbital timescales and spatial structure of the Sagittarius Stream

    Get PDF
    Recent maps of the halo using RR Lyrae from Pan-STARRS1 have clearly depicted the spatial structure of the Sagittarius stream. These maps show the leading and trailing stream apocenters differ in galactocentric radius by a factor of two, and also resolve substructure in the stream at these apocenters. Here we present dynamical models that reproduce these features of the stream in simple Galactic potentials. We find that debris at the apocenters must be dynamically young, in the sense of being stripped off in the last two pericentric passages, while the Sagittarius dwarf is currently experiencing a third passage. The ratio of apocenters is sensitive to both dynamical friction and the outer slope of the Galactic rotation curve. These dependences can be understood with simple regularities connecting the apocentric radii, circular velocities, and orbital period of the progenitor. The effect of dynamical friction on the stream can be constrained using substructure within the leading apocenter. Our ensembles of models are not intended as statistically proper fits to the stream. Nevertheless, out of the range of models we consider, we consistently find the mass within 100 kpc to be ∼7×1011 M⊙\sim 7 \times 10^{11} \, M_{\odot}, with a nearly flat rotation curve between 50 and 100 kpc. This points to a more extended Galactic halo than assumed in some current models. As in previous work, we find prolate or triaxial halos ease agreement with the track of the leading stream. We display the behavior of our models in various observational spaces and characterize the substructure expected within the stream. In particular, the young trailing stream visible near trailing apocenter should exhibit a tight trend of velocity with distance separate from the older debris, and we suggest that this will serve as an especially useful probe of the outer Galactic potential.Comment: Submitted to MNRA

    Detection of an SO2 plume over Sapporo, Japan from the eruption of Mt. Kasatochi using a balloon sounding technique

    Get PDF
    During the month of August 2008, 10 ozonesondes were launched from Hokkaido University in Sapporo, Japan as part of a study to examine regional pollution during the Olympic period. Seven of these soundings included a second instrument with a filter designed to remove SO2 from the intake air stream. SO2 interferes with the normal chemistry of the electrochemical cell (ECC) method for ozone detection, with the net result being that each molecule of SO2 registers as minus one molecule of O3. Thus the unfiltered sonde reports [O3] - [SO2] while the filtered sonde reports [O3]. Laboratory tests prior to launch indicate that the SO2 filter is ~87% effective, while destroying little to no O3. The difference between the filtered and unfiltered readings is ~[SO2]. We demonstrate the effectiveness of this technique in the lower and middle troposphere by examining profiles both with and without SO2 present. Ozone Monitoring Instrument (OMI) SO2 data (Krotkov et al., 2006, 2008) and trajectories from the NASA Goddard Trajectory model (Schoeberl & Sparling, 1995) connect the SO2 detected by our balloon borne instruments over Hokkaido, Japan 21 – 22 August to the plume from the volcanic eruption of Mt. Kasatochi 7 – 9 August

    Improved quasiparticle self-consistent electronic band structure and excitons in β\beta-LiGaO2_2

    Full text link
    The band structure of β\beta-LiGaO2_2 is calculated using the quasiparticle self-consistent QSGW^G\hat W method where the screened Coulomb interaction W^\hat W is evaluated including electron-hole interaction ladder diagrams and GG is the one-electron Green's function. Improved convergence compared to previous calculations leads to a significantly larger band gap of about 7.0 eV. However, exciton binding energies are found to be large and lead to an exciton gap of about 6.0 eV if also a zero-point-motion correction of about −0.4-0.4 eV is included. These results are in excellent agreement with recent experimental results on the onset of absorption. Besides the excitons observed thus far, the calculations indicate the existence of a Rydberg-like series of exciton excited states, which is however modified from the classical Wannier exciton model by the anisotropies of the material and the more complex mixing of Bloch states in the excitons resulting from the Bethe-Salpeter equation. The exciton fine structure and the exciton wave functions are visualized and analyzed in various ways

    Dynamics of Warm-Absorbing Gas in Seyfert Galaxies: NGC 5548

    Get PDF
    A hydromagnetic (MHD) wind from a clumpy molecular accretion disk is invoked to explain observations of warm absorbing (WA) gas in UVX from Sy galaxies. This paper focuses on two issues: (1) compatibility of kinematics and dynamics of MHD wind with the observed properties of WAs; and (2) relationship between the UVX absorptions. We provide an in-depth comparison between the MHD model and the Sy 1 galaxy NGC 5548, which at high spectral resolution exhibits a number of discrete UV absorption components. We find that: (1) the total column densities of Ovii, Oviii and H, are reproduced by constraining the UV ion column densities of Civ and Nv in each component to lie within a factor of 2 of their observed values and optimizing over the possible sets of component ionization states and Civ column densities; (2) the WA exists in the outer part of the wind and is not a continuation of the flow in the BLR; and (3) the WA extends in radial and polar directions and is ionization-stratified. X-ray absorption is found to be heavily biased towards smaller r, and UV absorption originates at larger distances from the central continuum source. We show that the discrete absorption components along the line-of-sight are intrinsically clumpy. Density differences between kinematic components result in a range of ionization and recombination timescales. We further test the applicability of the MHD wind to WAs in general, by constructing a quasi-continuous flow model, and extending it to arbitrary aspect angles. We estimate the fraction of Sy 1s having detectable WAs with larger Ovii column density than Oviii, and the range of total H column densities. We also find that the ratio of Ovii to Oviii optical depths can serve as a new diagnostic of AGN aspect angle.Comment: Latex, 8 postscript figures. Astrophysical Journal, 536, June 10, in pres

    Conversion of the Bifunctional 8-oxoguanine/β-δ AP DNA Repair Activities of Drosophila Ribosomal Protein S3 into the Human S3 Monofunctional β- elimination Catalyst Through a Single Amino Acid Change

    Get PDF
    The Drosophila S3 ribosomal protein has important roles in both protein translation and DNA repair. In regards to the latter activity, it has been shown that S3 contains vigorous N-glycosylase activity for the removal of 8-oxoguanine residues in DNA that leaves baseless sites in their places. Drosophila S3 also possesses an apurinic/apyrimidinic (AP) lyase activity in which the enzyme catalyzes a β-elimination reaction that cleaves phosphodiester bonds 3′ and adjacent to an AP lesion in DNA. In certain situations, this is followed by a δ-elimination reaction that ultimately leads to the formation of a single nucleotide gap in DNA bordered by 5′- and 3′-phosphate groups. The human S3 protein, although 80% identical to its Drosophila homolog and shorter by only two amino acids, has only marginal N-glycosylase activity. Its lyase activity only cleaves AP DNA by a β-elimination reaction, thus further distinguishing itself from the Drosophila S3 protein in lacking a δ-elimination activity. Using a hidden Markov model analysis based on the crystal structures of several DNA repair proteins, the enzymatic differences between Drosophila and human S3 were suggested by the absence of a conserved glutamine residue in human S3 that usually resides at the cleft of the deduced active site pocket of DNA glycosylases. Here we show that the replacement of the Drosophila glutamine by an alanine residue leads to the complete loss of glycosylase activity. Unexpectedly, the δ-elimination reaction at AP sites was also abrogated by a change in the Drosophila glutamine residue. Thus, a single amino acid change converted the Drosophila activity into one that is similar to that possessed by the human S3 protein. In support of this were experiments executed in vivo that showed that human S3 and the Drosophila site-directed glutamine-changed S3 performed poorly when compared with Drosophilawild-type S3 and its ability to protect a bacterial mutant from the harmful effects of DNA-damaging agents
    • …
    corecore