281 research outputs found

    Optimizing Parcel Transportation of PostNL

    Get PDF

    Status of atmospheric neutrino(mu)<-->neutrino(tau) oscillations and decoherence after the first K2K spectral data

    Get PDF
    We review the status of nu_mu-->nu_tau flavor transitions of atmospheric neutrinos in the 92 kton-year data sample collected in the first phase of the Super-Kamiokande (SK) experiment, in combination with the recent spectral data from the KEK-to-Kamioka (K2K) accelerator experiment (including 29 single-ring muon events). We consider a theoretical framework which embeds flavor oscillations plus hypothetical decoherence effects, and where both standard oscillations and pure decoherence represent limiting cases. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at 1 sigma (and d.o.f.=1) as: Delta m^2=(2.6 +- 0.4)x10^{-3} eV^2 and sin^2(2theta)=1.00+0.00-0.05. As compared with standard oscillations, the case of pure decoherence is disfavored, although it cannot be ruled out yet. In the general case, additional decoherence effects in the nu_mu-->nu_tau channel do not improve the fit to the SK and K2K data, and upper bounds can be placed on the associated decoherence parameter. Such indications, presently dominated by SK, could be strengthened by further K2K data, provided that the current spectral features are confirmed with higher statistics. A detailed description of the statistical analysis of SK and K2K data is also given, using the so-called ``pull'' approach to systematic uncertainties.Comment: 18 pages (RevTeX) + 12 figures (PostScript

    The physics impact of proton track identification in future megaton-scale water Cherenkov detectors

    Full text link
    In this paper, we investigate the impact in future megaton-scale water Cherenkov detectors of identifying proton Cherenkov rings. We estimate the expected event rates for detected neutral current and charged current quasi-elastic neutrino interactions from atmospheric neutrinos in a megaton-scale Super-Kamiokande-like detector with both 40% and 20% photo-cathode coverage. With this sample we examine the prospects for measuring the neutrino oscillation pattern, and searching for sterile neutrinos. We also determine the size of selected charged current quasi-elastic samples in a 300-kton fiducial volume Super-Kamiokande-like detector from examples of both conventional super-beams and beta-beams proposed in the literature. With these samples, it is shown that full kinematic neutrino reconstruction using the outgoing proton can improve the reconstructed energy resolution, and give good neutrino versus anti-neutrino tagging capabilities, adding important capabilities to water Cherenkov detectors in future projects. We determine the beam parameters necessary to make use of this technique and present distributions of neutrino and anti-neutrino selection efficiencies.Comment: 21 pages, 8 figures. Revised version with improved figures, text and structure, published in JHE

    Evolution of electronic and ionic structure of Mg-clusters with the growth cluster size

    Get PDF
    The optimized structure and electronic properties of neutral and singly charged magnesium clusters have been investigated using ab initio theoretical methods based on density-functional theory and systematic post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. We have systematically calculated the optimized geometries of neutral and singly charged magnesium clusters consisting of up to 21 atoms, electronic shell closures, binding energies per atom, ionization potentials and the gap between the highest occupied and the lowest unoccupied molecular orbitals. We have investigated the transition to the hcp structure and metallic evolution of the magnesium clusters, as well as the stability of linear chains and rings of magnesium atoms. The results obtained are compared with the available experimental data and the results of other theoretical works.Comment: 30 pages, 10 figures, 3 table

    Tracking Performance of the Scintillating Fiber Detector in the K2K Experiment

    Full text link
    The K2K long-baseline neutrino oscillation experiment uses a Scintillating Fiber Detector (SciFi) to reconstruct charged particles produced in neutrino interactions in the near detector. We describe the track reconstruction algorithm and the performance of the SciFi after three years of operation.Comment: 24pages,18 figures, and 1 table. Preprint submitted to NI

    Recent results on multiplicative noise

    Full text link
    Recent developments in the analysis of Langevin equations with multiplicative noise (MN) are reported. In particular, we: (i) present numerical simulations in three dimensions showing that the MN equation exhibits, like the Kardar-Parisi-Zhang (KPZ) equation both a weak coupling fixed point and a strong coupling phase, supporting the proposed relation between MN and KPZ; (ii) present dimensional, and mean field analysis of the MN equation to compute critical exponents; (iii) show that the phenomenon of the noise induced ordering transition associated with the MN equation appears only in the Stratonovich representation and not in the Ito one, and (iv) report the presence of a new first-order like phase transition at zero spatial coupling, supporting the fact that this is the minimum model for noise induced ordering transitions.Comment: Some improvements respect to the first versio

    Neutral-Current Atmospheric Neutrino Flux Measurement Using Neutrino-Proton Elastic Scattering in Super-Kamiokande

    Get PDF
    Recent results show that atmospheric νμ\nu_\mu oscillate with δm23×103\delta m^2 \simeq 3 \times 10^{-3} eV2^2 and sin22θatm1\sin^2{2\theta_{atm}} \simeq 1, and that conversion into νe\nu_e is strongly disfavored. The Super-Kamiokande (SK) collaboration, using a combination of three techniques, reports that their data favor νμντ\nu_\mu \to \nu_\tau over νμνsterile\nu_\mu \to \nu_{sterile}. This distinction is extremely important for both four-neutrino models and cosmology. We propose that neutrino-proton elastic scattering (ν+pν+p\nu + p \to \nu + p) in water \v{C}erenkov detectors can also distinguish between active and sterile oscillations. This was not previously recognized as a useful channel since only about 2% of struck protons are above the \v{C}erenkov threshold. Nevertheless, in the present SK data there should be about 40 identifiable events. We show that these events have unique particle identification characteristics, point in the direction of the incoming neutrinos, and correspond to a narrow range of neutrino energies (1-3 GeV, oscillating near the horizon). This channel will be particularly important in Hyper-Kamiokande, with 40\sim 40 times higher rate. Our results have other important applications. First, for a similarly small fraction of atmospheric neutrino quasielastic events, the proton is relativistic. This uniquely selects νμ\nu_\mu (not νˉμ\bar{\nu}_\mu) events, useful for understanding matter effects, and allows determination of the neutrino energy and direction, useful for the L/EL/E dependence of oscillations. Second, using accelerator neutrinos, both elastic and quasielastic events with relativistic protons can be seen in the K2K 1-kton near detector and MiniBooNE.Comment: 10 pages RevTeX, 8 figure

    Restricting quark matter models by gravitational wave observation

    Full text link
    We consider the possibilities for obtaining information about the equation of state for quark matter by using future direct observational data on gravitational waves. We study the nonradial oscillations of both fluid and spacetime modes of pure quark stars. If we observe the ff and the lowest wIIw_{\rm II} modes from quark stars, by using the simultaneously obtained radiation radius we can constrain the bag constant BB with reasonable accuracy, independently of the ss quark mass.Comment: To appear in Phys. Rev.

    Measurement of the residual energy of muons in the Gran Sasso underground Laboratories

    Full text link
    The MACRO detector was located in the Hall B of the Gran Sasso underground Laboratories under an average rock overburden of 3700 hg/cm^2. A transition radiation detector composed of three identical modules, covering a total horizontal area of 36 m^2, was installed inside the empty upper part of the detector in order to measure the residual energy of muons. This paper presents the measurement of the residual energy of single and double muons crossing the apparatus. Our data show that double muons are more energetic than single ones. This measurement is performed over a standard rock depth range from 3000 to 6500 hg/cm^2.Comment: 28 pages, 9 figure

    Muon Energy Estimate Through Multiple Scattering with the Macro Detector

    Get PDF
    Muon energy measurement represents an important issue for any experiment addressing neutrino induced upgoing muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDC's included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to reconstruct the muon energy for Eμ<E_\mu<40 GeV. The test beam data provide an absolute energy calibration, which allows us to apply this method to MACRO data.Comment: 25 pages, 11 figures, Submitted to Nucl. Instr. & Meth.
    corecore