17 research outputs found

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    Chemical and physical heterogeneity within native gold: implications for the design of gold particle studies

    Get PDF
    Studies of populations of gold particles are becoming increasingly common; however, interpretation of compositional data may not be straightforward. Natural gold is rarely homogenous. Alloy heterogeneity is present as microfabrics formed either during primary mineralization or by modification of pre-existing alloys by chemical and physical drivers during subsequent residence in either hypogene or surficial environments. In electron-probe-microanalysis (EPMA)-based studies, the combination of Cu, Hg, and Pd values and mineral inclusion suites may be diagnostic for source style of mineralization, but Ag alone is rarely sufficient. Gold characterization studies by laser-ablation-ICP mass spectrometry linked to both quadrupole and Time-of-Flight (ToF-MS) systems show that only Ag, Cu, and Hg form homogenous alloys with Au sufficiently often to act as generic discriminants. Where present, other elements are commonly distributed highly heterogeneously at the micron or submicron scale, either as mineral inclusions or in highly localized, but low concentrations. Drawing upon our own data derived from individual inspection and analyses of approximately 40,000 gold particles from 526 placer and in situ localities worldwide, we show that adequate characterization of gold from a specific locality normally requires study of a minimum of 150 particles via a two-stage approach comprising spatial characterization of compositional heterogeneity, plus crystallographic orientation mapping, that informs subsequent targeted acquisition of quantitative compositional data by EPMA and/or laser-ablation ICP-MS methods. Such data provide the platform to review current understanding of the genesis of gold particle characteristics, elevating future compositional studies from empirical descriptions to process-focused interpretations

    High-Resolution X-Ray Structure of the Trimeric Scar/WAVE-Complex Precursor Brk1

    Get PDF
    The Scar/WAVE-complex links upstream Rho-GTPase signaling to the activation of the conserved Arp2/3-complex. Scar/WAVE-induced and Arp2/3-complex-mediated actin nucleation is crucial for actin assembly in protruding lamellipodia to drive cell migration. The heteropentameric Scar/WAVE-complex is composed of Scar/WAVE, Abi, Nap, Pir and a small polypeptide Brk1/HSPC300, and recent work suggested that free Brk1 serves as a homooligomeric precursor in the assembly of this complex. Here we characterized the Brk1 trimer from Dictyostelium by analytical ultracentrifugation and gelfiltration. We show for the first time its dissociation at concentrations in the nanomolar range as well as an exchange of subunits within different DdBrk1 containing complexes. Moreover, we determined the three-dimensional structure of DdBrk1 at 1.5 Å resolution by X-ray crystallography. Three chains of DdBrk1 are associated with each other forming a parallel triple coiled-coil bundle. Notably, this structure is highly similar to the heterotrimeric α-helical bundle of HSPC300/WAVE1/Abi2 within the human Scar/WAVE-complex. This finding, together with the fact that Brk1 is collectively sandwiched by the remaining subunits and also constitutes the main subunit connecting the triple-coil domain of the HSPC300/WAVE1/Abi2/ heterotrimer to Sra1(Pir1), implies a critical function of this subunit in the assembly process of the entire Scar/WAVE-complex

    Executive Function in Pediatric Bipolar Disorder and Attention-Deficit Hyperactivity Disorder: In Search of Distinct Phenotypic Profiles

    Full text link

    Low effective fault strength due to frictional-viscous flow in phyllonites, Karakoram Fault Zone, NW India

    Get PDF
    Phyllosilicate-rich fault rocks are common in large-scale fault zones and can dramatically impact fault rheology. Experimental evidence suggests that multi-mechanism frictional-viscous flow (FVF) may operate in such lithologies, potentially significantly weakening mature fault cores. We report microstructures indicative of FVF in exhumed phyllonites of the Karakoram Fault Zone (KFZ), NW India. These include interconnected muscovite foliae, lack of quartz/feldspar crystal preferred orientations, and sutured grains and overgrowths indicative of fluid-assisted diffusive mass transfer. FVF microphysical modelling, using microstructural observations from the natural fault rock and experimentally-derived friction and diffusion coefficients, predicts low peak shear strengths of <20 MPa within the frictional viscous transition zone. Chlorite geothermometry indicates that synkinematic chlorites grew at 351 ± 34 C (c. 10 km depth) during FVF, immediately above the transition to quartz crystal plasticity. The deformation processes and interpreted low shear strength of the exhumed KFZ fault rocks provide analogues for processes operating currently at depth in active faults of similar scale. If similar lithologies are present at depth, then the Quaternary seismic characteristics of the KFZ support faults with phyllonitic cores being able to accommodate large seismic ruptures. The results also provide rare rheological constraints for mechanical models of the India-Asia collision zone

    Detrital Gold as an Indicator Mineral

    No full text
    Detrital gold fulfils the criteria of chemical inertia and physical durability required by indicator minerals but it has not found wide application in this role because it may be formed in different deposit types. This problem is soluble, because the generic compositional features of hydrothermal gold differ according to mineralization environment. The wide distribution of gold as a minor component of mineralization where other commodities are the principle exploration target extends the potential of an indicator methodology based on detrital gold to beyond the search for gold itself. Here we highlight how distinctive gold compositional signatures derived from alloy composition and deposit- specific suites of mineral inclusions could contribute to exploration for Cu-Au porphyries, redox- controlled uranium mineralization and ultramafic-hosted PGE mineralization. Future refinement this approach will focus on establishing the spatial distribution of elements at trace levels within gold particle sections using ToF-LA-ICP-MS and application of Exploratory Data Analysis to the resulting data sets. This approach is in its infancy, but aims to develop a classification algorithm useful to researchers irrespective of their previous experience. A pilot study has that random forests provide the best approach to establishing gold particle origins

    Archaeological applications of natural gold analyses

    No full text
    Compositional studies of natural gold usually have a geological focus, but are also important in archaeological provenancing. Both methodologies rely on compositional comparison of two sets of samples, one of which is geographically constrained. Here we describe how experiences in gold characterization resulting from geological studies are relevant to archaeology. Microchemical characterization of polished sections of natural gold identifies alloy compositions, alloy heterogeneity and mineral inclusions. Gold from all deposit types shows Cu and Sn values much lower than those recorded during numerous studies of artefacts. Inclusions in artefact gold include various Cu- and Sn-bearing compounds which indicate specific high temperature reactions that could ultimately illuminate the conditions of (s)melting. The use of LA-ICP-MS to generate a wide range of elemental discriminants for provenance studies may be compromised by alloy adulteration and/or unrepresentative analysis of natural/artefact alloys, which are commonly highly heterogeneous at the micron scale. Geological studies normally characterize only the earliest-formed (hypogene) alloy, whereas archaeology-focussed studies should entail analyses of bulk alloy compositions and impurities that may be incorporated during (s)melting. Isotopic-based provenancing alleviates many of these problems but, to date, generates regional rather than locality specific targets. A dual isotopic-compositional approach is recommended

    Low effective fault strength due to frictional-viscous flow in phyllonites, Karakoram Fault Zone, NW India

    No full text
    Phyllosilicate-rich fault rocks are common in large-scale fault zones and can dramatically impact fault rheology. Experimental evidence suggests that multi-mechanism frictional-viscous flow (FVF) may operate in such lithologies, potentially significantly weakening mature fault cores. We report microstructures indicative of FVF in exhumed phyllonites of the Karakoram Fault Zone (KFZ), NW India. These include interconnected muscovite foliae, lack of quartz/feldspar crystal preferred orientations, and sutured grains and overgrowths indicative of fluid-assisted diffusive mass transfer. FVF microphysical modelling, using microstructural observations from the natural fault rock and experimentally-derived friction and diffusion coefficients, predicts low peak shear strengths of &lt;20 MPa within the frictional-viscous transition zone. Chlorite geothermometry indicates that synkinematic chlorites grew at 351 ± 34 °C (c. 10 km depth) during FVF, immediately above the transition to quartz crystal plasticity. The deformation processes and interpreted low shear strength of the exhumed KFZ fault rocks provide analogues for processes operating currently at depth in active faults of similar scale. If similar lithologies are present at depth, then the Quaternary seismic characteristics of the KFZ support faults with phyllonitic cores being able to accommodate large seismic ruptures. The results also provide rare rheological constraints for mechanical models of the India-Asia collision zone

    Low effective fault strength due to frictional-viscous flow in phyllonites, Karakoram Fault Zone, NW India

    No full text
    Phyllosilicate-rich fault rocks are common in large-scale fault zones and can dramatically impact fault rheology. Experimental evidence suggests that multi-mechanism frictional-viscous flow (FVF) may operate in such lithologies, potentially significantly weakening mature fault cores. We report microstructures indicative of FVF in exhumed phyllonites of the Karakoram Fault Zone (KFZ), NW India. These include interconnected muscovite foliae, lack of quartz/feldspar crystal preferred orientations, and sutured grains and overgrowths indicative of fluid-assisted diffusive mass transfer. FVF microphysical modelling, using microstructural observations from the natural fault rock and experimentally-derived friction and diffusion coefficients, predicts low peak shear strengths of <20 MPa within the frictional-viscous transition zone. Chlorite geothermometry indicates that synkinematic chlorites grew at 351 ± 34 °C (c. 10 km depth) during FVF, immediately above the transition to quartz crystal plasticity. The deformation processes and interpreted low shear strength of the exhumed KFZ fault rocks provide analogues for processes operating currently at depth in active faults of similar scale. If similar lithologies are present at depth, then the Quaternary seismic characteristics of the KFZ support faults with phyllonitic cores being able to accommodate large seismic ruptures. The results also provide rare rheological constraints for mechanical models of the India-Asia collision zone
    corecore