11 research outputs found

    Fibrillar beta-lactoglobulin gels:Part 1. Fibril formation and structure

    No full text
    As a prelude to experimental and theoretical work on the mechanical properties of fibrillar beta-lactoglobulin gels, this paper reports the structural characterization of beta-lactoglobulin fibrils by electron and atomic force microscopy (AFM), infrared and Raman spectroscopy, and powder X-ray diffraction. Aggregates formed by incubation of beta-lactoglobulin in various alcohol-water mixtures at pH 2, and in water-trifluoroethanol (TFE) at pH 7, were found to be wormlike (approximately 7 nm in width and 1 microm in length), smoother, and seemingly stiffer fibrils formed on heating aqueous beta-lactoglobulin solutions at pH 2 and low ionic strength, although there was little evidence for the higher-order structures common in most amyloid-forming systems. Time-lapse AFM also revealed differences in the formation of these two fibril types: thermally induced aggregation occurring more cooperatively, in keeping with a nucleation and growth process. Only short stiff-rods

    Fibrillar beta-lactoglobulin gels:Part 2. Dynamic mechanical characterization of heat-set systems

    No full text
    Oscillatory shear rheometry (mechanical spectroscopy) has been used to study the heat-set gelation of beta-lactoglobulin at pH 2. Modulus-concentration relationships were obtained by extrapolating cure data to infinite time. In terms of theory, these fail to provide a clear distinction between the fractal description of biopolymer gels and the classical random f-functional polycondensation branching theory (cascade) approach, though the latter is preferred. Critical exponents for the sol-gel transition, derived from these data, are also discussed. Where gel time-concentration results are concerned the fractal model makes no predictions, and the cascade approach in its simplest form must be rejected in favor of a more sophisticated version involving delivery of fibrils by nucleation and growth into the random aggregation process. Over the limited concentration range accessed experimentally, cure data for the different beta-lactoglobulin solutions, reduced to the universal form G'/G'inf versus t/tgel, superimposed well for samples heated both at 80 and 75 degrees C and for different batches of protein. Studies of the frequency responses of the fully cured gels confirm the validity of the gel description given to these materials, and a study of the temperature dependence of the frequency spectrum suggests a fall in the elastic component of the modulus as temperature decreases. This contrasts with what has been found for other heat-set globular protein gels such as those from serum albumin where the gel modulus increases at lower temperatures. The present results are in good agreement with more limited amounts of pH 2 beta-lactoglobulin data published earlier, though some differences arise through a previous neglect of measurement "dead time"

    Fibrillar beta-lactoglobulin gels:Part 3. Dynamic mechanical characterization of solvent-induced systems

    No full text
    Oscillatory shear rheometry has been used to study the gelation of beta-lactoglobulin at ambient in 50% v/v trifluoroethanol (TFE)/pH 7 aqueous buffer and in 50% v/v ethanol (EtOH)/water at pH 2. In contrast to what was found on heating aqueous solutions at pH 2 (Part 2 of this series), a more expected "chemical gelation"-like profile was found with modulus components G' and G' ' crossing over as the gels formed and then with G' ' passing through a maximum. In addition, for the EtOH system, there was a significant modulus increase at long time, suggestive of a more complex two-step aggregation scheme. Modulus-concentration relationships were obtained for both systems by extrapolating cure data to infinite time. For the TFE gels, this data was accurately described by classical branching theory, although it could also be approximated by a constant power--law relationship. Only the latter described the modulus--concentration data for the gels in ethanol, but there were problems here of greater frequency dependence of the modulus values and much less certain extrapolation. Gel times for the TFE systems showed higher power laws in the concentration than could be explained by the branching theory in its simplest form being similar, in this respect, to the heat-set systems at pH 2. Such power laws were harder to establish for the EtOH gels as for these there was evidence of gel time divergence close to a critical concentration. Reduced G'/G'inf versus t/tgel data were difficult to interpret for the gels in ethanol, but for the TFE system they were consistent with previous results for the heat-set gels and approximated master curve superposition. The frequency and temperature dependences of the final gel moduli were also studied. In general, the networks induced by alcohols appeared more flexible than those obtained by heating

    Fibril Fragmentation Enhances Amyloid Cytotoxicity

    Get PDF
    Fibrils associated with amyloid disease are molecular assemblies of key biological importance, yet how cells respond to the presence of amyloid remains unclear. Cellular responses may not only depend on the chemical composition or molecular properties of the amyloid fibrils, but their physical attributes such as length, width, or surface area may also play important roles. Here, we report a systematic investigation of the effect of fragmentation on the structural and biological properties of amyloid fibrils. In addition to the expected relationship between fragmentation and the ability to seed, we show a striking finding that fibril length correlates with the ability to disrupt membranes and to reduce cell viability. Thus, despite otherwise unchanged molecular architecture, shorter fibrillar samples show enhanced cytotoxic potential than their longer counterparts. The results highlight the importance of fibril length in amyloid disease, with fragmentation not only providing a mechanism by which fibril load can be rapidly increased but also creating fibrillar species of different dimensions that can endow new or enhanced biological properties such as amyloid cytotoxicity

    The Circularization of Amyloid Fibrils Formed by Apolipoprotein C-II

    Get PDF
    Amyloid fibrils have historically been characterized by diagnostic dye-binding assays, their fibrillar morphology, and a “cross-β” x-ray diffraction pattern. Whereas the latter demonstrates that amyloid fibrils have a common β-sheet core structure, they display a substantial degree of morphological variation. One striking example is the remarkable ability of human apolipoprotein C-II amyloid fibrils to circularize and form closed rings. Here we explore in detail the structure of apoC-II amyloid fibrils using electron microscopy, atomic force microscopy, and x-ray diffraction studies. Our results suggest a model for apoC-II fibrils as ribbons ∼2.1-nm thick and 13-nm wide with a helical repeat distance of 53 nm ± 12 nm. We propose that the ribbons are highly flexible with a persistence length of 36 nm. We use these observed biophysical properties to model the apoC-II amyloid fibrils either as wormlike chains or using a random-walk approach, and confirm that the probability of ring formation is critically dependent on the fibril flexibility. More generally, the ability of apoC-II fibrils to form rings also highlights the degree to which the common cross-β superstructure can, as a function of the protein constituent, give rise to great variation in the physical properties of amyloid fibrils
    corecore