14 research outputs found

    Exploration des communautés bactériennes dans les systèmes aquaponiques

    Get PDF
    Aquaponics is a production system based on the dynamic equilibrium between fish, plants, and microorganisms. In order to better understand the role of microorganisms in this tripartite relationship, we studied the bacterial communities hosted in eight aquaponic and aquaculture systems. The bacterial communities were analyzed by 16S rRNA gene deep sequencing. At the phylum level, the bacterial communities from all systems were relatively similar with a predominance of Proteobacteria and Bacteroidetes. At the genus level, however, the communities present in the sampled systems were more heterogeneous. The biofilter samples harbored more diverse communities than the corresponding sump samples. The core microbiomes from the coupled and decoupled systems shared more common operational taxonomic units than with the aquaculture systems. Eventually, some of the taxa identified in the systems could have beneficial functions for plant growth and health, but a deeper analysis would be required to identify the precise functions involved in aquaponics

    Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity

    No full text
    Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here we report the identification of heterozygous missense mutations in the CTNNA1 gene (encoding α-catenin 1) in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice demonstrated increased cell shedding and the presence of large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, indicates that CTNNA1 is involved in maintaining RPE integrity and suggests that other components that participate in intercellular adhesion may be implicated in macular disease

    X-Linked Retinoschisis Novel Clinical Observations and Genetic Spectrum in 340 Patients

    No full text
    Purpose: To describe the natural course, phenotype, and genotype of patients with X-linked retinoschisis (XLRS).Design: Retrospective cohort study.Participants: Three hundred forty patients with XLRS from 178 presumably unrelated families.Methods: This multicenter, retrospective cohort study reviewed medical records of patients with XLRS for medical history, symptoms, visual acuity (VA), ophthalmoscopy, full-field electroretinography, and retinal imaging (fundus photography, spectral-domain [SD] OCT, fundus autofluorescence).Main Outcome Measures: Age at onset, age at diagnosis, severity of visual impairment, annual visual decline, and electroretinography and imaging findings.Results: Three hundred forty patients were included with a mean follow-up time of 13.2 years (range, 0.1-50.1 years). The median ages to reach mild visual impairment and low vision were 12 and 25 years, respectively. Severe visual impairment and blindness were observed predominantly in patients older than 40 years, with a predicted prevalence of 35% and 25%, respectively, at 60 years of age. The VA increased slightly during the first 2 decades of life and subsequently transitioned into an average annual decline of 0.44% (P A (p.(G1u72Lys)) (101 patients [38.7%]) and a deletion of exon 3 (38 patients [14.6%]).Conclusions: Large variabilities in phenotype and natural course of XLRS were seen in this study. In most patients, XLRS showed a slow deterioration starting in the second decade of life, suggesting an optimal window of opportunity for treatment within the first 3 decades of life. The integrity of EZ as well as the PROS length on SD OCT may be important in choosing optimal candidates for treatment and as potential structural end points in future therapeutic studies. No clear genotype-phenotype correlation was found. (C) 2021 by the American Academy of Ophthalmology.Ophthalmic researc

    The natural history of leber congenital amaurosis and cone–rod dystrophy associated with variants in the GUCY2D gene

    Get PDF
    Objective To describe the spectrum of Leber congenital amaurosis (LCA) and cone–rod dystrophy (CORD) associated with the GUCY2D gene and to identify potential end points and optimal patient selection for future therapeutic trials. Design International, multicenter, retrospective cohort study. Subjects Eighty-two patients with GUCY2D-associated LCA or CORD from 54 families. Methods Medical records were reviewed for medical history, best-corrected visual acuity (BCVA), ophthalmoscopy, visual fields, full-field electroretinography, and retinal imaging (fundus photography, spectral-domain OCT [SD-OCT], fundus autofluorescence). Main Outcomes Measures Age of onset, evolution of BCVA, genotype–phenotype correlations, anatomic characteristics on funduscopy, and multimodal imaging. Results Fourteen patients with autosomal recessive LCA and 68 with autosomal dominant CORD were included. The median follow-up times were 5.2 years (interquartile range [IQR] 2.6–8.8 years) for LCA and 7.2 years (IQR 2.2–14.2 years) for CORD. Generally, LCA presented in the first year of life. The BCVA in patients with LCA ranged from no light perception to 1.00 logarithm of the minimum angle of resolution (logMAR) and remained relatively stable during follow-up. Imaging for LCA was limited but showed little to no structural degeneration. In patients with CORD, progressive vision loss started around the second decade of life. The BCVA declined annually by 0.022 logMAR (P A and the c.2512C>T GUCY2D variants (P = 0.798). At the age of 40 years, the probability of being blind or severely visually impaired was 32%. The integrity of the ellipsoid zone (EZ) and that of the external limiting membrane (ELM) on SD-OCT correlated significantly with BCVA (Spearman ρ = 0.744, P = 0.001, and ρ = 0.712, P < 0.001, respectively) in those with CORD. Conclusions Leber congenital amaurosis associated with GUCY2D caused severe congenital visual impairment with relatively intact macular anatomy on funduscopy and available imaging, suggesting long preservation of photoreceptors. Despite large variability, GUCY2D-associated CORD generally presented during adolescence, with a progressive loss of vision, and culminated in severe visual impairment during mid-to-late adulthood. The integrity of the ELM and EZ may be suitable structural end points for therapeutic studies of GUCY2D-associated CORD

    The Natural History of Leber Congenital Amaurosis and Cone-Rod Dystrophy Associated with Variants in the GUCY2D Gene

    No full text
    Objective: To describe the spectrum of Leber congenital amaurosis (LCA) and cone-rod dystrophy (CORD) associated with the GUCY2D gene and to identify potential end points and optimal patient selection for future therapeutic trials.Design: International, multicenter, retrospective cohort study.Subjects: Eighty-two patients with GUCY2D-associated LCA or CORD from 54 families.Methods: Medical records were reviewed for medical history, best-corrected visual acuity (BCVA), ophthalmoscopy, visual fields, full-field electroretinography, and retinal imaging (fundus photography, spectral -domain OCT [SD-OCT], fundus autofluorescence).Main Outcomes Measures: Age of onset, evolution of BCVA, genotype-phenotype correlations, anatomic characteristics on funduscopy, and multimodal imaging.Results: Fourteen patients with autosomal recessive LCA and 68 with autosomal dominant CORD were included. The median follow-up times were 5.2 years (interquartile range [IQR] 2.6-8.8 years) for LCA and 7.2 years (IQR 2.2-14.2 years) for CORD. Generally, LCA presented in the first year of life. The BCVA in patients with LCA ranged from no light perception to 1.00 logarithm of the minimum angle of resolution (logMAR) and remained relatively stable during follow-up. Imaging for LCA was limited but showed little to no structural degeneration. In patients with CORD, progressive vision loss started around the second decade of life. The BCVA declined annually by 0.022 logMAR (P A and the c.2512C>T GUCY2D variants (P = 0.798). At the age of 40 years, the probability of being blind or severely visually impaired was 32%. The integrity of the ellipsoid zone (EZ) and that of the external limiting membrane (ELM) on SD-OCT correlated signifi-cantly with BCVA (Spearman r = 0.744, P = 0.001, and r = 0.712, P < 0.001, respectively) in those with CORD.Conclusions: Leber congenital amaurosis associated with GUCY2D caused severe congenital visual impairment with relatively intact macular anatomy on funduscopy and available imaging, suggesting long pres-ervation of photoreceptors. Despite large variability, GUCY2D-associated CORD generally presented during adolescence, with a progressive loss of vision, and culminated in severe visual impairment during mid-to-late adulthood. The integrity of the ELM and EZ may be suitable structural end points for therapeutic studies of GUCY2D-associated CORD. Ophthalmology Retina 2022;6:711-722 (c) 2022 by the American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).Ophthalmic researc

    Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity

    No full text
    Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here we report the identification of heterozygous missense mutations in the CTNNA1 gene (encoding alpha-catenin 1) in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice demonstrated increased cell shedding and the presence of large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, indicates that CTNNA1 is involved in maintaining RPE integrity and suggests that other components that participate in intercellular adhesion may be implicated in macular disease
    corecore