114 research outputs found

    Bird and Insect migration through Cyprus and the eastern Mediterranean region

    Get PDF
    Twice each year, vast numbers of birds and insects undergo poleward migrations. Species which cross between Europe and Africa must negotiate traversing the Mediterranean region. Many birds are known to avoid crossing seas and therefore in the east they bypass the Mediterranean by taking an overland route and migrating through Israel, Lebanon and Syria. However, some birds do make the sea crossing and use Cyprus as a steppingstone between Africa and Europe. Despite widespread knowledge of this route, no dedicated studies on bird migration have been carried out in the north of Cyprus, and no season-long assessments of insect migrants has been carried out on the island. From March through to May of 2019, a team of five University of Exeter students surveyed insect and bird spring migration occurring through the northeast peninsular of Cyprus over a 39-day period; this survey was to be repeated in spring 2020, but the COVID-19 pandemic rendered fieldwork impossible. In Chapter 1 observations of bird migration on Cyprus were contextualised by comparing them with ornithological radar data from Israel (a known migratory hotspot), then assessing broad migration trends and the effect of wind on bird migration intensity. In agreement with existing studies, larger birds like raptors were less impacted by wind currents than smaller birds such as songbirds. Moreover, when beneficial tailwinds were scarce, songbirds chose to migrate in lower wind speeds. Migration traffic rates for day-migrating birds were found to be proportionally greater over the Karpaz peninsular than in the Hula valley of Israel. Thirdly, temporal migration patterns for raptors over Cyprus and Israel correlated significantly. Chapter 2 takes a natural history focus by detailing the taxonomic assemblages of migrants recorded on Cyprus, and then discussing the implications of our findings. Higher than expected numbers of migrating crag martins (Ptyonoprogne rupestris), common kestrels (Falco tinnunculus) and pallid harriers (Circus macrourus) for Cyprus were recorded during our spring survey. Observed numbers for pallid harriers suggest that the Karpaz peninsular may possibly be Europe’s most significant flyway for the species. These provisional findings are of great conservation importance as pallid harriers are listed as a globally near threatened species on the IUCN Redlist. In addition, the first African migrant butterfly (Catopsilia florella) on Cyprus since 1986 and the first ever 2 Cyprus record of the ladybird Harmonia quadripunctata were recorded. Furthermore, evidence of mass migratory behaviour in the flies Delia platura and Stomoxys calcitrans is presented, both of which were not previously considered migratory. Observations of signs of illegal bird trapping at the Cyprus study sites is discussed anecdotally

    Gene flow and cross-mating in Plasmodium falciparum in households in a Tanzanian village

    Get PDF
    The diversity of the genes encoding 2 merozoite surface proteins (MSP-1 and MSP-2) of Plasmodium falciparum has been examined in parasites infecting members of 4 households in a village in Tanzania. The polymerase chain reaction (PCR) was used to characterize allelic variants of these genes by the sizes and sequences of regions of tandemly repeated bases in each gene. In each household extensive polymorphism was detected among parasites in the inhabitants and in infected mosquitoes caught in their houses. Similar frequencies of the alleles of these genes were observed in all households. Capture-recapture data indicated that both Anopheles gambiae and A.funestus freely dispersed among households in the hamlet. The results confirm that cross-mating and gene flow occur extensively among the parasites, and are discussed within the context of spatial clustering of natural populations of P. falciparu

    High mortality of beetle migrants along the Eastern Mediterranean Flyway

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are available in the supplementary material of this article.Migration is costly in terms of increased energy expenditure and exposure to risks encountered en route. These factors can lead to a higher mortality among migrants compared with more sedentary life history stages. Insect migrants are incredibly numerous, but as they are less conspicuous than vertebrate migrants and as migration often occurs at high altitude and over a broad front, it can be difficult to study migration-related mortality. A major source of information on migration-related mortality comes from cadavers found on the strandline following unsuccessful sea crossings. Here, we analyse strandline mortality following a 100 km crossing of open ocean along the Eastern Mediterranean Flyway from the Middle East mainland to the island of Cyprus by tens of millions of insects. All strandline recordings were of two species of beetles, the seven-spot ladybird Coccinella septempunctata and the carabid beetle Calosoma olivieri, whereas only nine individuals of C. septempunctata were caught successfully arriving with the rest of the insect assemblage over the ocean. Major strandings were associated with easterly winds, suggesting origins from the Middle East mainland, with the individuals documented as extremely weak and unable to fly or dead. Our results suggest that beetles are weaker migrants than other members of the migratory insect assemblage, with the sea crossing too far for the great majority to fly, leading to high mortality. The impact of this high mortality on the marine ecosystems is discussed.Royal Societ

    “Sexual” Population Structure and Genetics of the Malaria Agent P. falciparum

    Get PDF
    The population genetics and structure of P. falciparum determine the rate at which malaria evolves in response to interventions such as drugs and vaccines. This has been the source of considerable recent controversy, but here we demonstrate the organism to be essentially sexual, in an area of moderately high transmission in the Lower Shire Valley, Malawi. Seven thousand mosquitoes were collected and dissected, and genetic data were obtained on 190 oocysts from 56 infected midguts. The oocysts were genotyped at three microsatellite loci and the MSP1 locus. Selfing rate was estimated as 50% and there was significant genotypic linkage disequilibrium (LD) in the pooled oocysts. A more appropriate analysis searching for genotypic LD in outcrossed oocysts and/or haplotypic LD in the selfed oocysts found no evidence for LD, indicating that the population was effectively sexual. Inbreeding estimates at MSP1 were higher than at the microsatellites, possibly indicative of immune action against MSP1, but the effect was confounded by the probable presence of null mutations. Mating appeared to occur at random in mosquitoes and evidence regarding whether malaria clones in the same host were related (presumably through simultaneous inoculation in the same mosquito bite) was ambiguous. This is the most detailed genetic analysis yet of P. falciparum sexual stages, and shows P. falciparum to be a sexual organism whose genomes are in linkage equilibrium, which acts to slow the emergence of drug resistance and vaccine insensitivity, extending the likely useful therapeutic lifespan of drugs and vaccines

    The Transmembrane Isoform of Plasmodium falciparum MAEBL Is Essential for the Invasion of Anopheles Salivary Glands

    Get PDF
    Malaria transmission depends on infective stages in the mosquito salivary glands. Plasmodium sporozoites that mature in midgut oocysts must traverse the hemocoel and invade the mosquito salivary glands in a process thought to be mediated by parasite ligands. MAEBL, a homologue of the transmembrane EBP ligands essential in merozoite invasion, is expressed abundantly in midgut sporozoites. Alternative splicing generates different MAEBL isoforms and so it is unclear what form is functionally essential. To identify the MAEBL isoform required for P. falciparum (NF54) sporozoite invasion of salivary glands, we created knockout and allelic replacements each carrying CDS of a single MAEBL isoform. Only the transmembrane form of MAEBL is essential and is the first P. falciparum ligand validated as essential for invasion of Anopheles salivary glands. MAEBL is the first P. falciparum ligand experimentally determined to be essential for this important step in the life cycle where the vector becomes infectious for transmitting sporozoites to people. With an increasing emphasis on advancing vector-based transgenic methods for suppression of malaria, it is important that this type of study, using modern molecular genetic tools, is done with the agent of the human disease. Understanding what P. falciparum sporozoite ligands are critical for mosquito transmission will help validate targets for vector-based transmission-blocking strategies

    Differential Adhesive Properties of Sequestered Asexual and Sexual Stages of Plasmodium falciparum on Human Endothelial Cells Are Tissue Independent

    Get PDF
    The protozoan parasite Plasmodium falciparum, responsible for the most severe form of malaria, is able to sequester from peripheral circulation during infection. The asexual stage parasites sequester by binding to endothelial cell receptors in the microvasculature of various organs. P. falciparum gametocytes, the developmental stages responsible for parasite transmission from humans to Anopheles mosquitoes, also spend the almost ten days necessary for their maturation sequestered away from the peripheral circulation before they are released in blood mainstream. In contrast to those of asexual parasites, the mechanisms and cellular interactions responsible for immature gametocyte sequestration are largely unexplored, and controversial evidence has been produced so far on this matter. Here we present a systematic comparison of cell binding properties of asexual stages and immature and mature gametocytes from the reference P. falciparum clone 3D7 and from a patient parasite isolate on a panel of human endothelial cells from different tissues. This analysis includes assays on human bone marrow derived endothelial cell lines (HBMEC), as this tissue has been proposed as a major site of gametocyte maturation. Our results clearly demonstrate that cell adhesion of asexual stage parasites is consistently more efficient than that, virtually undetectable of immature gametocytes, irrespectively of the endothelial cell lines used and of parasite genotypes. Importantly, immature gametocytes of both lines tested here do not show a higher binding efficiency compared to asexual stages on bone marrow derived endothelial cells, unlike previously reported in the only study on this issue. This indicates that gametocyte-host interactions in this tissue are unlikely to be mediated by the same adhesion processes to specific endothelial receptors as seen with asexual forms

    Evaluation of allelic forms of the erythrocyte binding antigen 175 (EBA-175) in Plasmodium falciparum field isolates from Brazilian endemic area

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Plasmodium falciparum </it>Erythrocyte Binding Antigen-175 (EBA-175) is an antigen considered to be one of the leading malaria vaccine candidates. EBA-175 mediates sialic acid-dependent binding to glycophorin A on the erythrocytes playing a crucial role during invasion of the <it>P. falciparum </it>in the host cell. Dimorphic allele segments, termed C-fragment and F-fragment, have been found in high endemicity malaria areas and associations between the dimorphism and severe malaria have been described. In this study, the genetic dimorphism of EBA-175 was evaluated in <it>P. falciparum </it>field isolates from Brazilian malaria endemic area.</p> <p>Methods</p> <p>The study was carried out in rural villages situated near Porto Velho, Rondonia State in the Brazilian Amazon in three time points between 1993 and 2008. The allelic dimorphism of the EBA-175 was analysed by Nested PCR.</p> <p>Results</p> <p>The classical allelic dimorphism of the EBA-175 was identified in the studied area. Overall, C-fragment was amplified in a higher frequency than F-fragment. The same was observed in the three time points where C-fragment was observed in a higher frequency than F-fragment. Single infections (one fragment amplified) were more frequent than mixed infection (two fragments amplified).</p> <p>Conclusions</p> <p>These findings confirm the dimorphism of EBA175, since only the two types of fragments were amplified, C-fragment and F-fragment. Also, the results show the remarkable predominance of CAMP allele in the studied area. The comparative analysis in three time points indicates that the allelic dimorphism of the EBA-175 is stable over time.</p

    Field-based evidence of fast and global increase of Plasmodium falciparum drug-resistance by DNA-microarrays and PCR/RFLP in Niger

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last years, significant progress has been made in the comprehension of the molecular mechanism of malaria resistance to drugs. Together with <it>in vivo </it>tests, the molecular monitoring is now part of the survey strategy of the <it>Plasmodium </it>sensitivity. Currently, DNA-microarray analysis allows the simultaneous study of many single nucleotide polymorphisms (SNP) of <it>Plasmodium </it>isolates. In December 2005, the International Federation of the Red Cross distributed two million three hundred thousand long-lasting insecticide nets to pregnant women and mothers of under five years children in the whole Niger. Then, Niger adopted artemisinin-based combination therapy as first-line treatment.</p> <p>Methods</p> <p>Thirty four SNPs of <it>pfcrt, pfdhfr, pfdhps, pfmdr </it>and <it>pfATPase </it>were analysed by DNA-microarray and PCR/RFLP in two villages – Zindarou and Banizoumbou – with different durations of malaria transmission. The main objective of the study was to measure the dynamics <it>of Plasmodium falciparum </it>resistant strains and associated factors.</p> <p>Results</p> <p>This study shows a global and clear increase of the drug-resistance associated molecular markers frequencies during a relatively short-time period of four years. Markers associated with resistance to chloroquine and sulphonamids were more frequently found in the short transmission zone than in the long transmission one. The <it>pfcrt76T </it>mutation is significantly more present at Banizoumbou than Zindarou (38.3% vs 25.2%, p = 0.013).</p> <p>This work allowed the screening of several field strains for five SNPs of <it>PfATPase6 </it>gene. The <it>pfATPase6S769N</it>, candidate mutation of resistance to artemisinin was not found. However the <it>pfATPsaeA623E </it>mutation was found in 4.7% of samples.</p> <p>Conclusion</p> <p>A significant increase of several SNPs frequencies was highlighted over a four-year period. The polymorphism of five <it>PfATPase6 </it>gene SNPs was described. The global, large and fast increase of the molecular resistance is discussed in the context of current changes of health policy and malaria control in Niger.</p

    Resistance of a Rodent Malaria Parasite to a Thymidylate Synthase Inhibitor Induces an Apoptotic Parasite Death and Imposes a Huge Cost of Fitness

    Get PDF
    BACKGROUND: The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. METHODOLOGY/PRINCIPAL FINDINGS: To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. CONCLUSIONS/SIGNIFICANCE: The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite's apoptotic machinery may be exploited as a novel drug target in malaria and other protozoan diseases of medical importance
    corecore