31 research outputs found
Expanding the phenotype of the X-linked BCOR microphthalmia syndromes
Two distinct syndromes arise from pathogenic variants in the X-linked gene BCOR (BCL-6 corepressor): oculofaciocardiodental (OFCD) syndrome, which affects females, and a severe microphthalmia (‘Lenz’-type) syndrome affecting males. OFCD is an X-linked dominant syndrome caused by a variety of BCOR null mutations. As it manifests only in females, it is presumed to be lethal in males. The severe male X-linked recessive microphthalmia syndrome (‘Lenz’) usually includes developmental delay in addition to the eye findings and is caused by hypomorphic BCOR variants, mainly by a specific missense variant c.254C > T, p.(Pro85Leu). Here, we detail 16 new cases (11 females with 4 additional, genetically confirmed, affected female relatives; 5 male cases each with unaffected carrier mothers). We describe new variants and broaden the phenotypic description for OFCD to include neuropathy, muscle hypotonia, pituitary underdevelopment, brain atrophy, lipoma and the first description of childhood lymphoma in an OFCD case. Our male X-linked recessive cases show significant new phenotypes: developmental delay (without eye anomalies) in two affected half-brothers with a novel BCOR variant, and one male with high myopia, megalophthalmos, posterior embryotoxon, developmental delay, and heart and bony anomalies with a previously undescribed BCOR splice site variant. Our female OFCD cases and their affected female relatives showed variable features, but consistently had early onset cataracts. We show that a mosaic carrier mother manifested early cataract and dental anomalies. All female carriers of the male X-linked recessive cases for whom genetic confirmation was available showed skewed X-inactivation and were unaffected. In view of the extended phenotype, we suggest a new term of X-linked BCOR-related syndrome
Pathogenic variants in SMARCA1 cause an X-linked neurodevelopmental disorder modulated by NURF complex composition
Pathogenic variants in ATP-dependent chromatin remodeling proteins are a recurrent cause of neurodevelopmental disorders (NDDs). The NURF complex consists of BPTF and either the SNF2H ( SMARCA5) or SNF2L ( SMARCA1) ISWI-chromatin remodeling enzyme. Pathogenic variants in BPTF and SMARCA5 were previously implicated in NDDs. Here, we describe 40 individuals from 30 families with de novo or maternally inherited pathogenic variants in SMARCA1. This novel NDD was associated with mild to severe ID/DD, delayed or regressive speech development, and some recurrent facial dysmorphisms. Individuals carrying SMARCA1 loss-of-function variants exhibited a mild genome-wide DNA methylation profile and a high penetrance of macrocephaly. Genetic dissection of the NURF complex using Smarca1, Smarca5, and Bptfsingle and double mouse knockouts revealed the importance of NURF composition and dosage for proper forebrain development. Finally, we propose that genetic alterations affecting different NURF components result in a NDD with a broad clinical spectrum
Penetrance, variable expressivity and monogenic neurodevelopmental disorders.
PURPOSE
Incomplete penetrance is observed for most monogenic diseases. However, for neurodevelopmental disorders, the interpretation of single and multi-nucleotide variants (SNV/MNVs) is usually based on the paradigm of complete penetrance.
METHOD
From 2020 to 2022, we proposed a collaboration study with the French molecular diagnosis for intellectual disability network. The aim was to recruit families for whom the index case, diagnosed with a neurodevelopmental disorder, was carrying a pathogenic or likely pathogenic variant for an OMIM morbid gene and inherited from an asymptomatic parent. Grandparents were analyzed when available for segregation study.
RESULTS
We identified 12 patients affected by a monogenic neurodevelopmental disorder caused by likely pathogenic or pathogenic variant (SNV/MNV) inherited from an asymptomatic parent. These genes were usually associated with de novo variants. The patients carried different variants (1 splice-site variant, 4 nonsense and 7 frameshift) in 11 genes: CAMTA1, MBD5, KMT2C, KMT2E, ZMIZ1, MN1, NDUFB11, CUL3, MED13, ARID2 and RERE. Grandparents have been tested in 6 families, and each time the variant was confirmed de novo in the healthy carrier parent.
CONCLUSION
Incomplete penetrance for SNV and MNV in neurodevelopmental disorders might be more frequent than previously thought. This point is crucial to consider for interpretation of variants, family investigation, genetic counseling, and prenatal diagnosis. Molecular mechanisms underlying this incomplete penetrance still need to be identified
Parallel derivation of isogenic human primed and naive induced pluripotent stem cells
International audienceInduced pluripotent stem cells (iPSCs) have considerably impacted human developmental biology and regenerative medicine, notably because they circumvent the use of cells of embryonic origin and offer the potential to generate patient-specific pluripotent stem cells. However, conventional reprogramming protocols produce developmentally advanced, or primed, human iPSCs (hiPSCs), restricting their use to post-implantation human development modeling. Hence, there is a need for hiPSCs resembling preimplantation naive epiblast. Here, we develop a method to generate naive hiPSCs directly from somatic cells, using OKMS overexpression and specific culture conditions, further enabling parallel generation of their isogenic primed counterparts. We benchmark naive hiPSCs against human preimplantation epiblast and reveal remarkable concordance in their transcriptome, dependency on mito-chondrial respiration and X-chromosome status. Collectively, our results are essential for the understanding of pluripotency regulation throughout preimplantation development and generate new opportunities for disease modeling and regenerative medicine
Exome sequencing as a first-tier test for copy number variant detection: retrospective evaluation and prospective screening in 2418 cases
International audienceBackground Despite the availability of whole exome (WES) and genome sequencing (WGS), chromosomal microarray (CMA) remains the first-line diagnostic test in most rare disorders diagnostic workup, looking for copy number variations (CNVs), with a diagnostic yield of 10%–20%. The question of the equivalence of CMA and WES in CNV calling is an organisational and economic question, especially when ordering a WGS after a negative CMA and/or WES. Methods This study measures the equivalence between CMA and GATK4 exome sequencing depth of coverage method in detecting coding CNVs on a retrospective cohort of 615 unrelated individuals. A prospective detection of WES-CNV on a cohort of 2418 unrelated individuals, including the 615 individuals from the validation cohort, was performed. Results On the retrospective validation cohort, every CNV detectable by the method (ie, a CNV with at least one exon not in a dark zone) was accurately called (64/64 events). In the prospective cohort, 32 diagnoses were performed among the 2418 individuals with CNVs ranging from 704 bp to aneuploidy. An incidental finding was reported. The overall increase in diagnostic yield was of 1.7%, varying from 1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with chronic kidney failure. Conclusion Combining single-nucleotide variant (SNV) and CNV detection increases the suitability of exome sequencing as a first-tier diagnostic test for suspected rare Mendelian disorders. Before considering the prescription of a WGS after a negative WES, a careful reanalysis with updated CNV calling and SNV annotation should be considered
Cerebral dural arteriovenous fistulas in patients with PTEN ‐related hamartoma tumor syndrome
International audienceAbstract Central nervous system (CNS) dural arteriovenous fistulas (DAVF) have been reported in PTEN ‐related hamartoma tumor syndrome (PHTS). However, PHTS‐associated DAVF remain an underexplored field of the PHTS clinical landscape. Here, we studied cases with a PTEN pathogenic variant identified between 2007 and 2020 in our laboratory ( n = 58), and for whom brain imaging was available. Two patients had DAVF (2/58, 3.4%), both presenting at advanced stages: a 34‐year‐old man with a left lateral sinus DAVF at immediate risk of hemorrhage, and a 21‐year‐old woman with acute intracranial hypertension due to a torcular DAVF. Interestingly, not all patients had 3D TOF/MRA, the optimal sequences to detect DAVF. Early diagnosis of DAVF can be lifesaving, and is easier to treat compared to developed, proliferative, or complex lesions. As a result, one should consider brain MRI with 3D TOF/MRA in PHTS patients at genetic diagnosis, with subsequent surveillance on a case‐by‐case basis
Biallelic pathogenic variants in the lanosterol synthase gene LSS involved in the cholesterol biosynthesis cause alopecia with intellectual disability, a rare recessive neuroectodermal syndrome.
International audiencePurpose Lanosterol synthase (LSS) gene was initially described in families with extensive congenital cataracts. Recently, a study has highlighted LSS associated with hypotrichosis simplex. We expanded the phenotypic spectrum of LSS to a recessive neuroectodermal syndrome formerly named alopecia with mental retardation (APMR) syndrome. It is a rare autosomal recessive condition characterized by hypotrichosis and intellectual disability (ID) or developmental delay (DD), frequently associated with early-onset epilepsy and other dermatological features. Methods Through a multicenter international collaborative study, we identified LSS pathogenic variants in APMR individuals either by exome sequencing or LSS Sanger sequencing. Splicing defects were assessed by transcript analysis and minigene assay. Results We reported ten APMR individuals from six unrelated families with biallelic variants in LSS. We additionally identified one affected individual with a single rare variant in LSS and an allelic imbalance suggesting a second event. Among the identified variants, two were truncating, seven were missense, and two were splicing variants. Quantification of cholesterol and its precursors did not reveal noticeable imbalance. Conclusion In the cholesterol biosynthesis pathway, lanosterol synthase leads to the cyclization of (S)-2,3-oxidosqualene into lanosterol. Our data suggest LSS as a major gene causing a rare recessive neuroectodermal syndrome
PSMD11 loss-of-function variants correlate with a neurobehavioral phenotype, obesity, and increased interferon response
Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health.</p
Stankiewicz-Isidor syndrome: expanding the clinical and molecular phenotype
Purpose: Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS. Methods: We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status. Results: The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes. Conclusion: We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature
THUMPD1 bi-allelic variants cause loss of tRNA acetylation and a syndromic neurodevelopmental disorder
Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability. Here, we present 13 individuals from 8 families who harbor rare loss-of-function variants in THUMPD1. Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism, and ophthalmological abnormalities. We demonstrate that the bi-allelic variants identified cause loss of function of THUMPD1 and that this defect results in a loss of ac4C modification in small RNAs, and of individually purified tRNA-Ser-CGA. We further corroborate this effect by showing a loss of tRNA acetylation in two CRISPR-Cas9-generated THUMPD1 KO cell lines. In addition, we also show the resultant amino acid substitution that occurs in a missense THUMPD1 allele identified in an individual with compound heterozygous variants results in a marked decrease in THUMPD1 stability and RNA-binding capacity. Taken together, these results suggest that the lack of tRNA acetylation due to THUMPD1 loss of function results in a syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss, and facial dysmorphism