43 research outputs found

    A One Health overview, facilitating advances in comparative medicine and translational research.

    Get PDF
    Table of contentsA1 One health advances and successes in comparative medicine and translational researchCheryl StroudA2 Dendritic cell-targeted gorilla adenoviral vector for cancer vaccination for canine melanomaIgor Dmitriev, Elena Kashentseva, Jeffrey N. Bryan, David T. CurielA3 Viroimmunotherapy for malignant melanoma in the companion dog modelJeffrey N. Bryan, David Curiel, Igor Dmitriev, Elena Kashentseva, Hans Rindt, Carol Reinero, Carolyn J. HenryA4 Of mice and men (and dogs!): development of a commercially licensed xenogeneic DNA vaccine for companion animals with malignant melanomaPhilip J. BergmanA5 Successful immunotherapy with a recombinant HER2-expressing Listeria monocytogenes in dogs with spontaneous osteosarcoma paves the way for advances in pediatric osteosarcomaNicola J. Mason, Josephine S. Gnanandarajah, Julie B. Engiles, Falon Gray, Danielle Laughlin, Anita Gaurnier-Hausser, Anu Wallecha, Margie Huebner, Yvonne PatersonA6 Human clinical development of ADXS-HER2Daniel O'ConnorA7 Leveraging use of data for both human and veterinary benefitLaura S. TremlA8 Biologic replacement of the knee: innovations and early clinical resultsJames P. StannardA9 Mizzou BioJoint Center: a translational success storyJames L. CookA10 University and industry translational partnership: from the lab to commercializationMarc JacobsA11 Beyond docking: an evolutionarily guided OneHealth approach to drug discoveryGerald J. Wyckoff, Lee Likins, Ubadah Sabbagh, Andrew SkaffA12 Challenges and opportunities for data applications in animal health: from precision medicine to precision husbandryAmado S. GuloyA13 A cloud-based programmable platform for healthHarlen D. HaysA14 Comparative oncology: One Health in actionAmy K. LeBlancA15 Companion animal diseases bridge the translational gap for human neurodegenerative diseaseJoan R. Coates, Martin L. Katz, Leslie A. Lyons, Gayle C. Johnson, Gary S. Johnson, Dennis P. O'BrienA16 Duchenne muscular dystrophy gene therapyDongsheng DuanA17 Polycystic kidney disease: cellular mechanisms to emerging therapiesJames P. CalvetA18 The domestic cat as a large animal model for polycystic kidney diseaseLeslie A. Lyons, Barbara GandolfiA19 The support of basic and clinical research by the Polycystic Kidney Disease FoundationDavid A. BaronA20 Using naturally occurring large animal models of human disease to enable clinical translation: treatment of arthritis using autologous stromal vascular fraction in dogsMark L. WeissA21 Regulatory requirements regarding clinical use of human cells, tissues, and tissue-based productsDebra A. WebsterA22 Regenerative medicine approaches to Type 1 diabetes treatmentFrancis N. KaranuA23 The zoobiquity of canine diabetes mellitus, man's best friend is a friend indeed-islet transplantationEdward J. RobbA24 One Medicine: a development model for cellular therapy of diabetesRobert J. Harman

    Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity.

    Get PDF
    The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr) operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions

    A Novel OxyR Sensor and Regulator of Hydrogen Peroxide Stress with One Cysteine Residue in Deinococcus radiodurans

    Get PDF
    In bacteria, OxyR is a peroxide sensor and transcription regulator, which can sense the presence of reactive oxygen species and induce antioxidant system. When the cells are exposed to H2O2, OxyR protein is activated via the formation of a disulfide bond between the two conserved cysteine residues (C199 and C208). In Deinococcus radiodurans, a previously unreported special characteristic of DrOxyR (DR0615) is found with only one conserved cysteine. dr0615 gene mutant is hypersensitive to H2O2, but only a little to ionizing radiation. Site-directed mutagenesis and subsequent in vivo functional analyses revealed that the conserved cysteine (C210) is necessary for sensing H2O2, but its mutation did not alter the binding characteristics of OxyR on DNA. Under oxidant stress, DrOxyR is oxidized to sulfenic acid form, which can be reduced by reducing reagents. In addition, quantitative real-time PCR and global transcription profile results showed that OxyR is not only a transcriptional activator (e.g., katE, drb0125), but also a transcriptional repressor (e.g., dps, mntH). Because OxyR regulates Mn and Fe ion transporter genes, Mn/Fe ion ratio is changed in dr0615 mutant, suggesting that the genes involved in Mn/Fe ion homeostasis, and the genes involved in antioxidant mechanism are highly cooperative under extremely oxidant stress. In conclusion, these findings expand the OxyR family, which could be divided into two classes: typical 2-Cys OxyR and 1-Cys OxyR

    Listeria monocytogenes (Lm)-LLO Immunotherapies Reduce the Immunosuppressive Activity of Myeloid-derived Suppressor Cells and Regulatory T Cells in the Tumor Microenvironment

    No full text
    Myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) are major components of the immune suppressive cells that potentially limit the effectiveness of an immunotherapy-based treatment. Both of these suppressive cell types have been shown to expand in tumor models and promote T-cell dysfunction that in turn favors tumor progression. This study demonstrates that Listeria monocytogenes (Lm)-LLO immunotherapies effect on the suppressive ability of MDSC and Treg in the tumor microenvironment (TME), resulting in a loss in the ability of these cells to suppress T cells. This alteration of immunosuppression in the TME was an inherent property of all Lm-LLO immunotherapies tested and was independent of the tumor model. The virtually total loss in the suppressive ability of these cells in the TME was linked to the reduction in the expression of arginase I in MDSC and IL-10 in Treg. The results presented here provide insight into a novel mechanism of Lm-LLO immunotherapies that potentially contributes to therapeutic antitumor response

    Phase Variation of Ag43 is Independent of the Oxidation State of OxyR may end with a question mark. Please enter as plain text. If you have a subtitle, it should be preceded with a colon [:]. Use capitals only for the first word and for proper nouns.

    No full text
    OxyR is a DNA binding protein that differentially regulates a cell's response to hydrogen peroxide-mediated oxidative stress. We previously reported that the reduced form of OxyR is sufficient for repression of transcription of agn43 from unmethylated template DNA, which is essential for deoxyadenosine methylase (Dam)- and OxyR-dependent phase variation of agn43. Here we provide evidence that the oxidized form of OxyR [OxyR(ox)] also represses agn43 transcription. In vivo, we found that exogenous addition of hydrogen peroxide, sufficient to oxidize OxyR, did not affect the expression of agn43. OxyR(ox) repressed in vitro transcription but only from an unmethylated agn43 template. The -10 sequence of the promoter and three Dam target sequences were protected in an in vitro DNase I footprint assay by OxyR(ox). Furthermore, OxyR(ox) bound to the agn43 regulatory region DNA with an affinity similar to that for the regulatory regions of katG and oxyS, which are activated by OxyR(ox), indicating that binding at agn43 can occur at biologically relevant concentrations. OxyR-dependent regulation of Ag43 expression is therefore unusual in firstly that OxyR binding at agn43 is dependent on the methylation state of Dam target sequences in its binding site and secondly that OxyR-dependent repression appears to be independent of hydrogen-peroxide mediated oxidative stress and the oxidation state of OxyR

    Dam- and OxyR-dependent phase variation of agn43: Essential elements and evidence for a new role of DNA methylation

    No full text
    Phase variation of the outer membrane protein Ag43 in E. coli requires deoxyadenosine methylase (Dam) and OxyR. Previously, it was shown that OxyR is required for repression of the Ag43-encoding gene, agn43, and that Dam-dependent methylation of three GATC target sequences in the regulatory region abrogates OxyR binding. Here we report further characterization of agn43 transcription and its regulation. Transcription was initiated from a {sigma}70-dependent promoter at the G residue of the upstream GATC sequence. Template DNA and RNA polymerase were sufficient to obtain transcription in vitro, but DNA methylation enhanced the level of transcription. Analyses of transcription in vivo of agn'-lacZ with mutated Dam target sequences support this conclusion. Since methylation also abrogates OxyR binding, this indicates that methylation plays a dual role in facilitating agn43 transcription. In vitro transcription from an unmethylated template was repressed by OxyR(C199S), which resembles the reduced form of OxyR. Consistent with this and the role of Dam in OxyR binding, OxyR(C199S) protected from DNase I digestion the agn43 regulatory region from -16 to +42, which includes the three GATC sequences. Deletion analyses of the regulatory region showed that a 101-nucleotide region of the agn43 regulatory region containing the promoter and this OxyR binding region was sufficient for Dam- and OxyR-dependent phase variatio

    Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell cycle.

    Get PDF
    The Caulobacter DNA methyltransferase CcrM is one of five master cell-cycle regulators. CcrM is transiently present near the end of DNA replication when it rapidly methylates the adenine in hemimethylated GANTC sequences. The timing of transcription of two master regulator genes and two cell division genes is controlled by the methylation state of GANTC sites in their promoters. To explore the global extent of this regulatory mechanism, we determined the methylation state of the entire chromosome at every base pair at five time points in the cell cycle using single-molecule, real-time sequencing. The methylation state of 4,515 GANTC sites, preferentially positioned in intergenic regions, changed progressively from full to hemimethylation as the replication forks advanced. However, 27 GANTC sites remained unmethylated throughout the cell cycle, suggesting that these protected sites could participate in epigenetic regulatory functions. An analysis of the time of activation of every cell-cycle regulatory transcription start site, coupled to both the position of a GANTC site in their promoter regions and the time in the cell cycle when the GANTC site transitions from full to hemimethylation, allowed the identification of 59 genes as candidates for epigenetic regulation. In addition, we identified two previously unidentified N(6)-methyladenine motifs and showed that they maintained a constant methylation state throughout the cell cycle. The cognate methyltransferase was identified for one of these motifs as well as for one of two 5-methylcytosine motifs
    corecore