194 research outputs found

    Introduced megafauna are rewilding the Anthropocene

    Full text link
    © 2017 The Authors Large herbivorous mammals, already greatly reduced by the late-Pleistocene extinctions, continue to be threatened with decline. However, many herbivorous megafauna (body mass ≥ 100 kg) have populations outside their native ranges. We evaluate the distribution, diversity and threat status of introduced terrestrial megafauna worldwide and their contribution towards lost Pleistocene species richness. Of 76 megafauna species, 22 (∼29%) have introduced populations; of these eleven (50%) are threatened or extinct in their native ranges. Introductions have increased megafauna species richness by between 10% (Africa) and 100% (Australia). Furthermore, between 15% (Asia) and 67% (Australia) of extinct species richness, from the late Pleistocene to today, have been numerically replaced by introduced megafauna. Much remains unknown about the ecology of introduced herbivores, but evidence suggests that these populations are rewilding modern ecosystems. We propose that attitudes towards introduced megafauna should allow for broader research and management goals

    Homogenisation of carnivorous mammal ensembles caused by global range reductions of large-bodied hypercarnivores during the late Quaternary

    Get PDF
    Carnivorous mammals play crucial roles in ecosystems by influencing prey densities and behaviour, and recycling carrion. Yet, the influence of carnivores on global ecosystems has been affected by extinctions and range contractions throughout the Late Pleistocene and Holocene (~130 000 years ago to the current). Large-bodied mammals were particularly affected, but how dietary strategies influenced species’ susceptibility to geographic range reductions remains unknown. We investigated 1) the importance of dietary strategies in explaining range reductions of carnivorous mammals (≥5% vertebrate meat consumption), and 2) differences in functional diversity of continental carnivore ensembles by comparing current, known ranges to current, expected ranges under a present-natural counterfactual scenario. The present-natural counterfactual estimates current mammal ranges had modern humans not expanded out of Africa during the Late Pleistocene and were not a main driver of extinctions and range contractions, alongside changing climates. Ranges of large-bodied hypercarnivorous mammals are currently smaller than expected, compared to smaller-bodied carnivorous mammals that consume less vertebrate meat. This resulted in consistent differences in continental functional diversity, whereby current ensembles of carnivorous mammals have undergone homogenisation through structural shifts towards smaller-bodied insectivorous and herbivorous species. The magnitude of ensemble structural shift varied among continents, with Australia experiencing the greatest difference. Weighting functional diversity by species’ geographic range sizes caused a three-fold greater shift in ensemble centroids than when using presence-absence alone. Conservation efforts should acknowledge current reductions in the potential geographic ranges of large-bodied hypercarnivores and aim to restore functional roles in carnivore ensembles, where possible, across continents

    Molecular evidence for Anaplasma phagocytophilum in Israel

    Get PDF
    Sequences from the Anaplasma phagocytophilum 16S rRNA gene were detected in 5 ticks representing 3 species (Hyalomma marginatum, Rhipicephalus turanicus, and Boophilus kohlsi) collected from roe deer (Capreolus capreolus) in Mount Carmel, Israel. The sequences were all identical to those of Ap-variant 1 strain

    Experiments in no-impact control of dingoes: Comment on Allen et al. 2013

    Full text link
    There has been much recent debate in Australia over whether lethal control of dingoes incurs environmental costs, particularly by allowing increase of populations of mesopredators such as red foxes and feral cats. Allen et al. (2013) claim to show in their recent study that suppression of dingo activity by poison baiting does not lead to mesopredator release, because mesopredators are also suppressed by poisoning. We show that this claim is not supported by the data and analysis reported in Allen et al.'s paper. © 2014 Johnson et al.; licensee BioMed Central Ltd

    Functional traits of the world’s late Quaternary large-bodied avian and mammalian herbivores

    Full text link
    Prehistoric and recent extinctions of large-bodied terrestrial herbivores had significant and lasting impacts on Earth’s ecosystems due to the loss of their distinct trait combinations. The world’s surviving large-bodied avian and mammalian herbivores remain among the most threatened taxa. As such, a greater understanding of the ecological impacts of large herbivore losses is increasingly important. However, comprehensive and ecologically-relevant trait datasets for extinct and extant herbivores are lacking. Here, we present HerbiTraits, a comprehensive functional trait dataset for all late Quaternary terrestrial avian and mammalian herbivores ≥10 kg (545 species). HerbiTraits includes key traits that influence how herbivores interact with ecosystems, namely body mass, diet, fermentation type, habitat use, and limb morphology. Trait data were compiled from 557 sources and comprise the best available knowledge on late Quaternary large-bodied herbivores. HerbiTraits provides a tool for the analysis of herbivore functional diversity both past and present and its effects on Earth’s ecosystems

    When all life counts in conservation

    Full text link
    © 2019 Society for Conservation Biology Conservation science involves the collection and analysis of data. These scientific practices emerge from values that shape who and what is counted. Currently, conservation data are filtered through a value system that considers native life the only appropriate subject of conservation concern. We examined how trends in species richness, distribution, and threats change when all wildlife count by adding so-called non-native and feral populations to the International Union for Conservation of Nature Red List and local species richness assessments. We focused on vertebrate populations with founding members taken into and out of Australia by humans (i.e., migrants). We identified 87 immigrant and 47 emigrant vertebrate species. Formal conservation accounts underestimated global ranges by an average of 30% for immigrants and 7% for emigrants; immigrations surpassed extinctions in Australia by 52 species; migrants were disproportionately threatened (33% of immigrants and 29% of emigrants were threatened or decreasing in their native ranges); and incorporating migrant populations into risk assessments reduced global threat statuses for 15 of 18 species. Australian policies defined most immigrants as pests (76%), and conservation was the most commonly stated motivation for targeting these species in killing programs (37% of immigrants). Inclusive biodiversity data open space for dialogue on the ethical and empirical assumptions underlying conservation science

    Spotted fever group rickettsiae in ticks collected from wild animals in Israel

    Full text link
    We report molecular evidence for the presence of spotted fever group rickettsiae (SFGR) in ticks collected from roe deer, addax, red foxes, and wild boars in Israel. Rickettsia aeschlimannii was detected in Hyalomma marginatum and Hyalomma detritum while Rickettsia massiliae was present in Rhipicephalus turanicus ticks. Furthermore, a novel uncultured SFGR was detected in Haemaphysalis adleri and Haemaphysalis parva ticks from golden jackals. The pathogenicity of the novel SFGR for humans is unknown; however, the presence of multiple SFGR agents should be considered when serological surveillance data from Israel are interpreted because of significant antigenic cross-reactivity among Rickettsia. The epidemiology and ecology of SFGR in Israel appear to be more complicated than was previously believed. Copyright © 2011 by The American Society of Tropical Medicine and Hygiene

    More than Mere Numbers: The Impact of Lethal Control on the Social Stability of a Top-Order Predator

    Get PDF
    Population control of socially complex species may have profound ecological implications that remain largely invisible if only their abundance is considered. Here we discuss the effects of control on a socially complex top-order predator, the dingo (Canis lupus dingo). Since European occupation of Australia, dingoes have been controlled over much of the continent. Our aim was to investigate the effects of control on their abundance and social stability. We hypothesized that dingo abundance and social stability are not linearly related, and proposed a theoretical model in which dingo populations may fluctuate between three main states: (A) below carrying capacity and socially fractured, (B) above carrying capacity and socially fractured, or (C) at carrying capacity and socially stable. We predicted that lethal control would drive dingoes into the unstable states A or B, and that relaxation of control would allow recovery towards C. We tested our predictions by surveying relative abundance (track density) and indicators of social stability (scent-marking and howling) at seven sites in the arid zone subject to differing degrees of control. We also monitored changes in dingo abundance and social stability following relaxation and intensification of control. Sites where dingoes had been controlled within the previous two years were characterized by low scent-marking activity, but abundance was similar at sites with and without control. Signs of social stability steadily increased the longer an area was allowed to recover from control, but change in abundance did not follow a consistent path. Comparison of abundance and stability among all sites and years demonstrated that control severely fractures social groups, but that the effect of control on abundance was neither consistent nor predictable. Management decisions involving large social predators must therefore consider social stability to ensure their conservation and ecological functioning

    Assessing Predation Risk to Threatened Fauna from their Prevalence in Predator Scats: Dingoes and Rodents in Arid Australia

    Get PDF
    The prevalence of threatened species in predator scats has often been used to gauge the risks that predators pose to threatened species, with the infrequent occurrence of a given species often considered indicative of negligible predation risks. In this study, data from 4087 dingo (Canis lupus dingo and hybrids) scats were assessed alongside additional information on predator and prey distribution, dingo control effort and predation rates to evaluate whether or not the observed frequency of threatened species in dingo scats warrants more detailed investigation of dingo predation risks to them. Three small rodents (dusky hopping-mice Notomys fuscus; fawn hopping-mice Notomys cervinus; plains mice Pseudomys australis) were the only threatened species detected in <8% of dingo scats from any given site, suggesting that dingoes might not threaten them. However, consideration of dingo control effort revealed that plains mice distribution has largely retracted to the area where dingoes have been most heavily subjected to lethal control. Assessing the hypothetical predation rates of dingoes on dusky hopping-mice revealed that dingo predation alone has the potential to depopulate local hopping-mice populations within a few months. It was concluded that the occurrence of a given prey species in predator scats may be indicative of what the predator ate under the prevailing conditions, but in isolation, such data can have a poor ability to inform predation risk assessments. Some populations of threatened fauna assumed to derive a benefit from the presence of dingoes may instead be susceptible to dingo-induced declines under certain conditions
    corecore