4,915 research outputs found
The effects of soil moisture, soil texture, and host orientation on the ability of Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) to infect Galleria mellonella (Lepidoptera: Pyralidae)
Abstract
Entomopathogenic nematodes (EPN) demonstrate potential as a biological control for soil dwelling insects. However, edaphic factors, such as soil moisture and texture impact the efficacy of EPN on a host. The objectives were to examine the effects of soil texture and moisture on 1) the infection rate of Galleria mellonella L. by EPN and; 2) the ability of H. bacteriophora (Poinar) to move through the soil to find a host at different orientations. Soil textures consisted of sand, a sand/silt/peat mixture, and a silt/peat mixture at 50% and 100% moisture. A general linear model was used to evaluate infection rates and EPN movement. Both soil moisture (p \u3c 0.05) and texture (p \u3c 0.05) had significant effects on nematodes infection rates of G. mellonella. Texture, moisture, and host orientation did not significantly affect (p \u3e 0.05) the ability of EPN to find a host. While EPN were able to find a host within a variety of soil types, soils that held more water had higher infection rates than soils that held less water, suggesting that moisture may be a key component in facilitating infection by EPN. By understanding the factors that influence the ability of EPN to find and infect a host, improved bio-control programs using EPN can be developed
Recommended from our members
High-K materials and metal gates for CMOS applications
The scaling of complementary metal oxide semiconductor (CMOS) transistors has led to the silicon dioxide layer used as a gate dielectric becoming so thin that the gate leakage current becomes too large. This led to the replacement of SiO2 by a physically thicker layer of a higher dielectric constant or ‘high-K’ oxide such as hafnium oxide. Intensive research was carried out to develop these oxides into high quality electronic materials. In addition, the incorporation of Ge in the CMOS transistor structure has been employed to enable higher carrier mobility and performance. This review covers both scientific and technological issues related to the high-K gate stack – the choice of oxides, their deposition, their structural and metallurgical behaviour, atomic diffusion, interface structure, their electronic structure, band offsets, electronic defects, charge trapping and conduction mechanisms, reliability, mobility degradation and oxygen scavenging to achieve the thinnest oxide thicknesses. The high K oxides were implemented in conjunction with a replacement of polycrystalline Si gate electrodes with metal gates. The strong metallurgical interactions between the gate electrodes and the HfO2 which resulted an unstable gate threshold voltage resulted in the use of the lower temperature ‘gate last’ process flow, in addition to the standard ‘gate first’ approach. Work function control by metal gate electrodes and by oxide dipole layers is discussed. The problems associated with high K oxides on Ge channels are also discussed.RMW acknowledges an IBM Faculty award and JR acknowledges funding from EPSRC.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.mser.2014.11.00
The effects of soil moisture, soil texture, and host orientation on the ability of Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) to infect Galleria mellonella (Lepidoptera: Pyralidae)
Abstract
Entomopathogenic nematodes (EPN) demonstrate potential as a biological control for soil dwelling insects. However, edaphic factors, such as soil moisture and texture impact the efficacy of EPN on a host. The objectives were to examine the effects of soil texture and moisture on 1) the infection rate of Galleria mellonella L. by EPN and; 2) the ability of H. bacteriophora (Poinar) to move through the soil to find a host at different orientations. Soil textures consisted of sand, a sand/silt/peat mixture, and a silt/peat mixture at 50% and 100% moisture. A general linear model was used to evaluate infection rates and EPN movement. Both soil moisture (p \u3c 0.05) and texture (p \u3c 0.05) had significant effects on nematodes infection rates of G. mellonella. Texture, moisture, and host orientation did not significantly affect (p \u3e 0.05) the ability of EPN to find a host. While EPN were able to find a host within a variety of soil types, soils that held more water had higher infection rates than soils that held less water, suggesting that moisture may be a key component in facilitating infection by EPN. By understanding the factors that influence the ability of EPN to find and infect a host, improved bio-control programs using EPN can be developed
Continental breakup and UHP rock exhumation in action: GPS results from the Woodlark Rift, Papua New Guinea
We show results from a network of campaign Global Positioning System (GPS) sites in the Woodlark Rift, southeastern Papua New Guinea, in a transition from seafloor spreading to continental rifting. GPS velocities indicate anticlockwise rotation (at 2–2.7°/Myr, relative to Australia) of crustal blocks north of the rift, producing 10–15 mm/yr of extension in the continental rift, increasing to 20–40 mm/yr of seafloor spreading at the Woodlark Spreading Center. Extension in the continental rift is distributed among multiple structures. These data demonstrate that low-angle normal faults in the continents, such as the Mai'iu Fault, can slip at high rates nearing 10 mm/yr. Extensional deformation observed in the D'Entrecasteaux Islands, the site of the world's only actively exhuming Ultra-High Pressure (UHP) rock terrane, supports the idea that extensional processes play a critical role in UHP rock exhumation. GPS data do not require significant interseismic coupling on faults in the region, suggesting that much of the deformation may be aseismic. Westward transfer of deformation from the Woodlark Spreading Center to the main plate boundary fault in the continental rift (the Mai'iu fault) is accommodated by clockwise rotation of a tectonic block beneath Goodenough Bay, and by dextral strike slip on transfer faults within (and surrounding) Normanby Island. Contemporary extension rates in the Woodlark Spreading Center are 30–50% slower than those from seafloor spreading-derived magnetic anomalies. The 0.5 Ma to present seafloor spreading estimates for the Woodlark Basin may be overestimated, and a reevaluation of these data in the context of the GPS rates is warranted
Liquefaction Mitigation of Three Projects in California
Ground displacements resulting from earthquake-induced soil liquefaction and dynamic densification can cause moderate to severe structural damage during and after an earthquake. Geotechnical construction methods of mitigating these potential ground displacements include mass excavation and replacement with engineered fill, ground improvement such as soil mixing, jet grouting, compaction piers, vibro compaction, vibro stone columns, and deep dynamic compaction, or deep foundations such as driven piles. The ground improvement methods rely on altering the soil properties to resist the seismically-induced shear stresses and soil grain redistribution while deep foundation methods bypass liquefiable soil deposits to found in deeper competent soil or rock. This paper presents an advancement in displacement ground improvement methods used to control soil liquefaction potential by driving highly compacted aggregate into the soil deposit. The ground improvement is accomplished by driving a pipe mandrel to displace the soil mass, backfilling the cavity with select aggregate, and compacting the aggregate in controlled lifts utilizing vertical, vibratory driven methods to further displace and densify the soil deposit while creating a dense Rammed Aggregate Pier®. Specifically the ground improvement method 1) reinforces the soil deposit to resist and re-distribute seismic shear stresses, 2) increases the density and horizontal stress of the surrounding soil, and 3) provides a gravel drain to enhance dissipation of seismicallyinduced excess pore water pressure in the soil. Several projects performed in California, in areas of high seismic activity, have been tested for the resulting shear reinforcement effects and increased density effects manifested by this advanced method of construction. These projects and their resulting field test results are presented and discussed
The Pacific Center of Action of the Northern Hemisphere Annular Mode: Real or Artifact?
The leading empirical orthogonal function (EOF) of the sea level pressure (SLP) field, referred to as the Arctic Oscillation (AO) or Northern Hemisphere annular mode (NAM), consists of a dipole between the polar cap region and the surrounding zonal ring centered along 458N. Embedded within the outer ring are centers of action over the Euro-Atlantic and Pacific sectors in which SLP fluctuates in phase. That the observed SLP fluctuations at these two centers of action are virtually uncorrelated raises the question of whether the Pacific center in the annular mode could be an artifact of EOF analysis. It is argued that sea level pressure fluctuations at the Pacific and Euro-Atlantic centers of action of the AO/ NAM would be more strongly correlated were it not for the fact that SLP variability over the North Pacific is dominated by a pattern in which fluctuations over the North Atlantic and North Pacific are inversely related. Evidence of the coexistence of such a pattern, which resembles an augmented version of the Pacific–North American pattern, is presented
- …