16 research outputs found

    Infectious SIV resides in adipose tissue and induces metabolic defects in chronically infected rhesus macaques

    Get PDF
    Additional file 1. General method for isolation of stromal-vascular-fraction (AT-SVF) cells from adipose tissue of rhesus macaques, and subsequent analyses. (A) 30-60 mins collagenase digestion of solid adipose tissue samples from rhesus macaques is followed by washing and centrifugation, allowing for separation of mature adipocytes (floater fraction) from the stromal-vascular-fraction (AT-SVF) cells. AT-SVF cells were then analyzed by flow cytometry, nested PCR, and viral outgrowth assays, and floater fraction adipocytes analyzed for mRNA expression. (B) Sample flow cytometry gating schemes for examination of AT-SVF T cells, NKT cells, macrophages, and B cells

    Hemodynamic Effects of Anthrax Toxins in the Rabbit Model and the Cardiac Pathology Induced by Lethal Toxin

    Get PDF
    Anthrax lethal toxin (LeTx) and edema toxin (EdTx) have been shown to alter hemodynamics in the rodent model, while LeTx primarily is reported to induce extensive tissue pathology. However, the rodent model has limitations when used for comparison to higher organisms such as humans. The rabbit model, on the other hand, has gained recognition as a useful model for studying anthrax infection and its pathophysiological effects. In this study, we assessed the hemodynamic effects of lethal toxin (LeTx) and edema toxin (EdTx) in the rabbit model using physiologically relevant amounts of the toxins. Moreover, we further examine the pathological effects of LeTx on cardiac tissue. We intravenously injected Dutch-belted rabbits with either low-dose and high-dose recombinant LeTx or a single dose of EdTx. The animals’ heart rate and mean arterial pressure were continuously monitored via telemetry until either 48 or 72 h post-challenge. Additional animals challenged with LeTx were used for cardiac troponin I (cTnI) quantitation, cardiac histopathology, and echocardiography. LeTx depressed heart rate at the lower dose and mean arterial pressure (MAP) at the higher dose. EdTx, on the other hand, temporarily intensified heart rate while lowering MAP. Both doses of LeTx caused cardiac pathology with the higher dose having a more profound effect. Lastly, left-ventricular dilation due to LeTx was not apparent at the given time-points. Our study demonstrates the hemodynamic effects of anthrax toxins, as well as the pathological effects of LeTx on the heart in the rabbit model, and it provides further evidence for the toxins’ direct impact on the heart

    Protective immunity elicited by oral immunization of mice with Salmonella enterica serovar Typhimurium Braun lipoprotein (Lpp) and acetyltransferase (MsbB) mutants

    Get PDF
    We evaluated the extent of attenuation and immunogenicity of the ∆lppAB and ∆lppAB ∆msbB mutants of Salmonella enterica serovar Typhimurium when delivered to mice by the oral route. These mutants were deleted either for the Braun lipoprotein genes (lppA and lppB) or in combination with the msbB gene, which encodes an acetyltransferase required for lipid A modification of lipopolysaccharide. Both the mutants were attenuated (100% animal survival) and triggered robust innate and adaptive immune responses. Comparable levels of IgG and its isotypes were produced in mice infected with wild-type (WT) S. Typhimurium or its aforementioned mutant strains. The ∆lppAB ∆msbB mutant-immunized animals resulted in the production of higher levels of fecal IgA and serum cytokines during later stages of vaccination (adaptive response). A significant production of interleukin-6 from T-cells was also noted in the ∆lppAB ∆msbB mutant-immunized mice when compared to that of the ∆lppAB mutant. On the other hand, IL-17A production was significantly more in the serum of ∆lppAB mutant-immunized mice (innate response) with a stronger splenic T-cell proliferative and tumor-necrosis factor-α production. Based on 2-dimensional gel analysis, alterations in the levels of several proteins were observed in both the mutant strains when compared to that in WT S. Typhimurium and could be associated with the higher immunogenicity of the mutants. Finally, both ∆lppAB and ∆lppAB ∆msbB mutants provided complete protection to immunized mice against a lethal oral challenge dose of WT S. Typhimurium. Thus, these mutants may serve as excellent vaccine candidates and also provide a platform for delivering heterologous antigens

    Teixobactin Provides Protection against Inhalation Anthrax in the Rabbit Model

    No full text
    The use of antibiotics is a vital means of treating infections caused by the bacteria Bacillus (B.) anthracis. Importantly, with the potential future use of multidrug-resistant strains of B. anthracis as bioweapons, new antibiotics are needed as alternative therapeutics. In this blinded study, we assessed the protective efficacy of teixobactin, a recently discovered antibiotic, against inhalation anthrax infection in the adult rabbit model. New Zealand White rabbits were infected with a lethal dose of B. anthracis Ames spores via the inhalation route, and blood samples were collected at various times to assess antigenemia, bacteremia, tissue bacterial load, and antibody production. Treatments were administered upon detection of B. anthracis protective antigen in the animals’ sera. For comparison, a fully protective dose of levofloxacin was used as a positive control. Rabbits treated with teixobactin showed 100% survival following infection, and the bacteremia was completely resolved by 24–48 h post-treatment. In addition, the bacterial/spore loads in tissues of the animals treated with teixobactin were either zero or dramatically less relative to that of the negative control animals. Moreover, microscopic evaluation of the tissues revealed decreased pathology following treatment with teixobactin. Overall, these results show that teixobactin was protective against inhalation anthrax infection in the rabbit model, and they indicate the potential of teixobactin as a therapeutic for the disease

    Neocortical synaptophysin asymmetry and behavioral lateralization in chimpanzees (Pan troglodytes)

    No full text
    Although behavioral lateralization is known to correlate with certain aspects of brain asymmetry in primates, there are limited data concerning hemispheric biases in the microstructure of the neocortex. In the present study, we investigated whether there is asymmetry in synaptophysin-immunoreactive puncta density and protein expression levels in the region of hand representation of the primary motor cortex in chimpanzees (Pan troglodytes). Synaptophysin is a presynaptic vesicle-associated protein found in nearly all synapses of the central nervous system. We also tested whether there is a relationship between hand preference on a coordinated bimanual task and the interhemispheric distribution of synaptophysin as measured by both stereologic counts of immunoreactive puncta and by Western blotting. Our results demonstrated that synaptophysin-immunoreactive puncta density is not asymmetric at the population level, whereas synaptophysin protein expression levels are significantly higher in the right hemisphere. Handedness was correlated with interindividual variation in synaptophysin-immunoreactive puncta density. As a group, left-handed and ambidextrous chimpanzees showed a rightward bias in puncta density. In contrast, puncta densities were symmetrical in right-handed chimpanzees. These findings support the conclusion that synapse asymmetry is modulated by lateralization of skilled motor behavior in chimpanzees

    Braun Lipoprotein (Lpp) Contributes to Virulence of Yersiniae: Potential Role of Lpp in Inducing Bubonic and Pneumonic Plagueâ–¿

    No full text
    Yersinia pestis evolved from Y. pseudotuberculosis to become the causative agent of bubonic and pneumonic plague. We identified a homolog of the Salmonella enterica serovar Typhimurium lipoprotein (lpp) gene in Yersinia species and prepared lpp gene deletion mutants of Y. pseudotuberculosis YPIII, Y. pestis KIM/D27 (pigmentation locus minus), and Y. pestis CO92 with reduced virulence. Mice injected via the intraperitoneal route with 5 × 107 CFU of the Δlpp KIM/D27 mutant survived a month, even though this would have constituted a lethal dose for the parental KIM/D27 strain. Subsequently, these Δlpp KIM/D27-injected mice were solidly protected against an intranasally administered, highly virulent Y. pestis CO92 strain when it was given as five 50% lethal doses (LD50). In a parallel study with the pneumonic plague mouse model, after 72 h postinfection, the lungs of animals infected with wild-type (WT) Y. pestis CO92 and given a subinhibitory dose of levofloxacin had acute inflammation, edema, and masses of bacteria, while the lung tissue appeared essentially normal in mice inoculated with the Δlpp mutant of CO92 and given the same dose of levofloxacin. Importantly, while WT Y. pestis CO92 could be detected in the bloodstreams and spleens of infected mice at 72 h postinfection, the Δlpp mutant of CO92 could not be detected in those organs. Furthermore, the levels of cytokines/chemokines detected in the sera were significantly lower in animals infected with the Δlpp mutant than in those infected with WT CO92. Additionally, the Δlpp mutant was more rapidly killed by macrophages than was the WT CO92 strain. These data provided evidence that the Δlpp mutants of yersiniae were significantly attenuated and could be useful tools in the development of new vaccines

    Human Monoclonal Antibody AVP-21D9 to Protective Antigen Reduces Dissemination of the Bacillus anthracis Ames Strain from the Lungs in a Rabbit Modelâ–¿

    No full text
    Dutch-belted and New Zealand White rabbits were passively immunized with AVP-21D9, a human monoclonal antibody to protective antigen (PA), at the time of Bacillus anthracis spore challenge using either nasal instillation or aerosol challenge techniques. AVP-21D9 (10 mg/kg) completely protected both rabbit strains against lethal infection with Bacillus anthracis Ames spores, regardless of the inoculation method. Further, all but one of the passively immunized animals (23/24) were completely resistant to rechallenge with spores by either respiratory challenge method at 5 weeks after primary challenge. Analysis of the sera at 5 weeks after primary challenge showed that residual human anti-PA levels decreased by 85 to 95%, but low titers of rabbit-specific anti-PA titers were also measured. Both sources of anti-PA could have contributed to protection from rechallenge. In a subsequent study, bacteriological and histopathology analyses revealed that B. anthracis disseminated to the bloodstream in some naïve animals as early as 24 h postchallenge and increased in frequency with time. AVP-21D9 significantly reduced the dissemination of the bacteria to the bloodstream and to various organs following infection. Examination of tissue sections from infected control animals, stained with hematoxylin-eosin and the Gram stain, showed edema and/or hemorrhage in the lungs and the presence of bacteria in mediastinal lymph nodes, with necrosis and inflammation. Tissue sections from infected rabbits dosed with AVP-21D9 appeared comparable to corresponding tissues from uninfected animals despite lethal challenge with B. anthracis Ames spores. Concomitant treatment with AVP-21D9 at the time of challenge conferred complete protection in the rabbit inhalation anthrax model. Early treatment increased the efficacy progressively and in a dose-dependent manner. Thus, AVP-21D9 could offer an adjunct or alternative clinical treatment regimen against inhalation anthrax

    Antibacterial Role for Natural Killer Cells in Host Defense to Bacillus anthracis

    No full text
    Natural killer (NK) cells have innate antibacterial activity that could be targeted for clinical interventions for infectious disease caused by naturally occurring or weaponized bacterial pathogens. To determine a potential role for NK cells in immunity to Bacillus anthracis, we utilized primary human and murine NK cells, in vitro assays, and in vivo NK cell depletion in a murine model of inhalational anthrax. Our results demonstrate potent antibacterial activity by human NK cells against B. anthracis bacilli within infected autologous monocytes. Surprisingly, NK cells also mediate moderate antibacterial effects on extracellular vegetative bacilli but do not have activity against extracellular or intracellular spores. The immunosuppressive anthrax lethal toxin impairs NK gamma interferon (IFN-γ) expression, but neither lethal nor edema toxin significantly alters the viability or cytotoxic effector function of NK cells. Compared to human NK cells, murine NK cells have a similar, though less potent, activity against intracellular and extracellular B. anthracis. The in vivo depletion of murine NK cells does not alter animal survival following intranasal infection with B. anthracis spores in our studies but significantly increases the bacterial load in the blood of infected animals. Our studies demonstrate that NK cells participate in the innate immune response against B. anthracis and suggest that immune modulation to augment NK cell function in early stages of anthrax should be further explored in animal models as a clinical intervention strategy
    corecore