182 research outputs found

    Gene capture prediction and overlap estimation in EST sequencing from one or multiple libraries

    Get PDF
    BACKGROUND: In expressed sequence tag (EST) sequencing, we are often interested in how many genes we can capture in an EST sample of a targeted size. This information provides insights to sequencing efficiency in experimental design, as well as clues to the diversity of expressed genes in the tissue from which the library was constructed. RESULTS: We propose a compound Poisson process model that can accurately predict the gene capture in a future EST sample based on an initial EST sample. It also allows estimation of the number of expressed genes in one cDNA library or co-expressed in two cDNA libraries. The superior performance of the new prediction method over an existing approach is established by a simulation study. Our analysis of four Arabidopsis thaliana EST sets suggests that the number of expressed genes present in four different cDNA libraries of Arabidopsis thaliana varies from 9155 (root) to 12005 (silique). An observed fraction of co-expressed genes in two different EST sets as low as 25% can correspond to an actual overlap fraction greater than 65%. CONCLUSION: The proposed method provides a convenient tool for gene capture prediction and cDNA library property diagnosis in EST sequencing

    Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the overwhelming majority of genes found in angiosperms are members of gene families, and both gene- and genome-duplication are pervasive forces in plant genomes, some genes are sufficiently distinct from all other genes in a genome that they can be operationally defined as 'single copy'. Using the gene clustering algorithm MCL-tribe, we have identified a set of 959 single copy genes that are shared single copy genes in the genomes of <it>Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera </it>and <it>Oryza sativa</it>. To characterize these genes, we have performed a number of analyses examining GO annotations, coding sequence length, number of exons, number of domains, presence in distant lineages, such as <it>Selaginella </it>and <it>Physcomitrella</it>, and phylogenetic analysis to estimate copy number in other seed plants and to demonstrate their phylogenetic utility. We then provide examples of how these genes may be used in phylogenetic analyses to reconstruct organismal history, both by using extant coverage in EST databases for seed plants and <it>de novo </it>amplification via RT-PCR in the family Brassicaceae.</p> <p>Results</p> <p>There are 959 single copy nuclear genes shared in <it>Arabidopsis</it>, <it>Populus</it>, <it>Vitis </it>and <it>Oryza </it>["APVO SSC genes"]. The majority of these genes are also present in the <it>Selaginella </it>and <it>Physcomitrella </it>genomes. Public EST sets for 197 species suggest that most of these genes are present across a diverse collection of seed plants, and appear to exist as single or very low copy genes, though exceptions are seen in recently polyploid taxa and in lineages where there is significant evidence for a shared large-scale duplication event. Genes encoding proteins localized in organelles are more commonly single copy than expected by chance, but the evolutionary forces responsible for this bias are unknown.</p> <p>Regardless of the evolutionary mechanisms responsible for the large number of shared single copy genes in diverse flowering plant lineages, these genes are valuable for phylogenetic and comparative analyses. Eighteen of the APVO SSC single copy genes were amplified in the Brassicaceae using RT-PCR and directly sequenced. Alignments of these sequences provide improved resolution of Brassicaceae phylogeny compared to recent studies using plastid and ITS sequences. An analysis of sequences from 13 APVO SSC genes from 69 species of seed plants, derived mainly from public EST databases, yielded a phylogeny that was largely congruent with prior hypotheses based on multiple plastid sequences. Whereas single gene phylogenies that rely on EST sequences have limited bootstrap support as the result of limited sequence information, concatenated alignments result in phylogenetic trees with strong bootstrap support for already established relationships. Overall, these single copy nuclear genes are promising markers for phylogenetics, and contain a greater proportion of phylogenetically-informative sites than commonly used protein-coding sequences from the plastid or mitochondrial genomes.</p> <p>Conclusions</p> <p>Putatively orthologous, shared single copy nuclear genes provide a vast source of new evidence for plant phylogenetics, genome mapping, and other applications, as well as a substantial class of genes for which functional characterization is needed. Preliminary evidence indicates that many of the shared single copy nuclear genes identified in this study may be well suited as markers for addressing phylogenetic hypotheses at a variety of taxonomic levels.</p

    The Amborella genome: an evolutionary reference for plant biology

    Get PDF
    The nuclear genome sequence of Amborella trichopoda, the sister species to all other extant angiosperms, will be an exceptional resource for plant genomics

    Comparison of next generation sequencing technologies for transcriptome characterization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG) ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the <it>Arabidopsis </it>genome (NCBI Accession SRA008180.19). We also generated 454-GS20 sequences and <it>de novo </it>assemblies for the basal eudicot California poppy (<it>Eschscholzia californica</it>) and the magnoliid avocado (<it>Persea americana</it>) using a variety of methods for cDNA synthesis.</p> <p>Results</p> <p>The <it>Arabidopsis </it>reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB), 119,518 (88.7%) mapped exactly to known exons, while 1,117 (0.8%) mapped to introns, 11,524 (8.6%) spanned annotated intron/exon boundaries, and 3,066 (2.3%) extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The <it>Arabidopsis </it>data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc <url>http://fgp.huck.psu.edu/NG_Sims/ngsim.pl</url>, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics.</p> <p>Conclusion</p> <p>NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance over capillary-based sequencing, but NG sequencing also presents significant challenges in assembly and sequence accuracy due to short read lengths, method-specific sequencing errors, and the absence of physical clones. These problems may be overcome by hybrid sequencing strategies using a mixture of sequencing methodologies, by new assemblers, and by sequencing more deeply. Sequencing and microarray outcomes from multiple experiments suggest that our simulator will be useful for guiding NG transcriptome sequencing projects in a wide range of organisms.</p

    Drivers of success in implementing sustainable tourism policies in urban areas

    Get PDF
    The existing literature in the field of sustainable tourism highlights a number of barriers that impede the implementation of policies in this area. Yet, not many studies have so far considered the factors that would contribute to putting this concept into practice, and few address the case of urban areas. The concept of sustainability has only received limited attention in urban tourism research, even though large cities are recognised as one of the most important tourist destinations that attract vast numbers of visitors. Adopting a case study approach, this paper discusses a number of drivers of success identified by policy-makers in London to contribute to the implementation of sustainable tourisms policies at the local level, and briefly looks at the relationship between these drivers and the constraints perceived by the respondents to hinder the implementation of such policies in practice. These findings may help policy-makers in other large cities to successfully develop and implement policies towards sustainable development of tourism in their area

    Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies

    Get PDF
    BACKGROUND: Previous studies in basal angiosperms have provided insight into the diversity within the angiosperm lineage and helped to polarize analyses of flowering plant evolution. However, there is still not an experimental system for genetic studies among basal angiosperms to facilitate comparative studies and functional investigation. It would be desirable to identify a basal angiosperm experimental system that possesses many of the features found in existing plant model systems (e.g., Arabidopsis and Oryza). RESULTS: We have considered all basal angiosperm families for general characteristics important for experimental systems, including availability to the scientific community, growth habit, and membership in a large basal angiosperm group that displays a wide spectrum of phenotypic diversity. Most basal angiosperms are woody or aquatic, thus are not well-suited for large scale cultivation, and were excluded. We further investigated members of Aristolochiaceae for ease of culture, life cycle, genome size, and chromosome number. We demonstrated self-compatibility for Aristolochia elegans and A. fimbriata, and transformation with a GFP reporter construct for Saruma henryi and A. fimbriata. Furthermore, A. fimbriata was easily cultivated with a life cycle of just three months, could be regenerated in a tissue culture system, and had one of the smallest genomes among basal angiosperms. An extensive multi-tissue EST dataset was produced for A. fimbriata that includes over 3.8 million 454 sequence reads. CONCLUSIONS: Aristolochia fimbriata has numerous features that facilitate genetic studies and is suggested as a potential model system for use with a wide variety of technologies. Emerging genetic and genomic tools for A. fimbriata and closely related species can aid the investigation of floral biology, developmental genetics, biochemical pathways important in plant-insect interactions as well as human health, and various other features present in early angiosperms

    Floral gene resources from basal angiosperms for comparative genomics research

    Get PDF
    BACKGROUND: The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. RESULTS: Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. CONCLUSION: Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and functional divergence, and analyses of adaptive molecular evolution. Since not all genes in the floral transcriptome will be associated with flowering, these EST resources will also be of interest to plant scientists working on other functions, such as photosynthesis, signal transduction, and metabolic pathways

    Genome-Wide Association Data Reveal a Global Map of Genetic Interactions among Protein Complexes

    Get PDF
    This work demonstrates how gene association studies can be analyzed to map a global landscape of genetic interactions among protein complexes and pathways. Despite the immense potential of gene association studies, they have been challenging to analyze because most traits are complex, involving the combined effect of mutations at many different genes. Due to lack of statistical power, only the strongest single markers are typically identified. Here, we present an integrative approach that greatly increases power through marker clustering and projection of marker interactions within and across protein complexes. Applied to a recent gene association study in yeast, this approach identifies 2,023 genetic interactions which map to 208 functional interactions among protein complexes. We show that such interactions are analogous to interactions derived through reverse genetic screens and that they provide coverage in areas not yet tested by reverse genetic analysis. This work has the potential to transform gene association studies, by elevating the analysis from the level of individual markers to global maps of genetic interactions. As proof of principle, we use synthetic genetic screens to confirm numerous novel genetic interactions for the INO80 chromatin remodeling complex

    Transcendental-Phenomenological Proof and Descriptive Metaphysics

    Get PDF
    Following P.F. Strawson's reading of Kant, the majority of the literature on transcendental arguments seeks to divorce such arguments from their original Kantian context. This thesis is concerned with Mark Sacks's recent defence of transcendental arguments, which takes a different approach. A critique is given of Sacks's work and extensions and modifications of his approach are recommended. It is proposed that certain difficulties encountered by Kant's transcendentally-ideal approach can be overcome with Hegelian solutions
    • …
    corecore