13 research outputs found
Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2+ homeostasis.
Miner1 is a redox-active 2Fe2S cluster protein. Mutations in Miner1 result in Wolfram Syndrome, a metabolic disease associated with diabetes, blindness, deafness, and a shortened lifespan. Embryonic fibroblasts from Miner1(-/-) mice displayed ER stress and showed hallmarks of the unfolded protein response. In addition, loss of Miner1 caused a depletion of ER Ca(2+) stores, a dramatic increase in mitochondrial Ca(2+) load, increased reactive oxygen and nitrogen species, an increase in the GSSG/GSH and NAD(+)/NADH ratios, and an increase in the ADP/ATP ratio consistent with enhanced ATP utilization. Furthermore, mitochondria in fibroblasts lacking Miner1 displayed ultrastructural alterations, such as increased cristae density and punctate morphology, and an increase in O2 consumption. Treatment with the sulphydryl anti-oxidant N-acetylcysteine reversed the abnormalities in the Miner1 deficient cells, suggesting that sulphydryl reducing agents should be explored as a treatment for this rare genetic disease
A versatile approach to multiple gene RNA interference using microRNA-based short hairpin RNAs
Background: Effective and stable knockdown of multiple gene targets by RNA interference is often necessary to overcome isoform redundancy, but it remains a technical challenge when working with intractable cell systems.
Results: We have developed a flexible platform using RNA polymerase II promoter-driven expression of microRNA-like short hairpin RNAs which permits robust depletion of multiple target genes from a single transcript. Recombination-based subcloning permits expression of multi-shRNA transcripts from a comprehensive range of plasmid or viral vectors. Retroviral delivery of transcripts targeting isoforms of cAMP-dependent protein kinase in the RAW264.7 murine macrophage cell line emphasizes the utility of this approach and provides insight to cAMP-dependent transcription.
Conclusion: We demonstrate functional consequences of depleting multiple endogenous target genes using miR-shRNAs, and highlight the versatility of the described vector platform for multiple target gene knockdown in mammalian cells
A European multicenter outcome study on the different perioperative airway management policies following midface surgery in syndromic craniosynostosis:a proposal for a Standard Operating Procedure
BACKGROUND: Perioperative airway management following midface advancements in children with Apert and Crouzon/Pfeiffer syndrome can be challenging, and protocols often differ. This study examined airway management following midface advancements and postoperative respiratory complications.METHODS: A multicenter, retrospective cohort study was performed to obtain information about the timing of extubation, perioperative airway management, and respiratory complications after monobloc / le Fort III procedures.RESULTS: Ultimately, 275 patients (129 monobloc and 146 Le Fort III) were included; 62 received immediate extubation and 162 delayed extubation; 42 had long-term tracheostomies and nine perioperative short-term tracheostomies. Short-term tracheostomies were in most centers reserved for selected cases. Patients with delayed extubation remained intubated for three days (IQR 2 - 5). The rate of no or only oxygen support after extubation was comparable between patients with immediate and delayed extubation, 58/62 (94%) and 137/162 (85%) patients, respectively. However, patients with immediate extubation developed less postoperative pneumonia than those with delayed, 0/62 (0%) versus 24/161 (15%) (P = 0.001), respectively. Immediate extubation also appeared safe in moderate/severe OSA since 19/20 (95%) required either no or only oxygen support after extubation. The odds of developing intubation-related complications increased by 21% with every extra day of intubation.CONCLUSIONS: Immediate extubation following midface advancements was found to be a safe option, as it was not associated with respiratory insufficiency but did lead to fewer complications. Immediate extubation should be considered routine management in patients with no/mild OSA and should be the aim in moderate/severe OSA after careful assessment.</p
A European multicenter outcome study on the different perioperative airway management policies following midface surgery in syndromic craniosynostosis:a proposal for a Standard Operating Procedure
BACKGROUND: Perioperative airway management following midface advancements in children with Apert and Crouzon/Pfeiffer syndrome can be challenging, and protocols often differ. This study examined airway management following midface advancements and postoperative respiratory complications.METHODS: A multicenter, retrospective cohort study was performed to obtain information about the timing of extubation, perioperative airway management, and respiratory complications after monobloc / le Fort III procedures.RESULTS: Ultimately, 275 patients (129 monobloc and 146 Le Fort III) were included; 62 received immediate extubation and 162 delayed extubation; 42 had long-term tracheostomies and nine perioperative short-term tracheostomies. Short-term tracheostomies were in most centers reserved for selected cases. Patients with delayed extubation remained intubated for three days (IQR 2 - 5). The rate of no or only oxygen support after extubation was comparable between patients with immediate and delayed extubation, 58/62 (94%) and 137/162 (85%) patients, respectively. However, patients with immediate extubation developed less postoperative pneumonia than those with delayed, 0/62 (0%) versus 24/161 (15%) (P = 0.001), respectively. Immediate extubation also appeared safe in moderate/severe OSA since 19/20 (95%) required either no or only oxygen support after extubation. The odds of developing intubation-related complications increased by 21% with every extra day of intubation.CONCLUSIONS: Immediate extubation following midface advancements was found to be a safe option, as it was not associated with respiratory insufficiency but did lead to fewer complications. Immediate extubation should be considered routine management in patients with no/mild OSA and should be the aim in moderate/severe OSA after careful assessment.</p
WEB ORIENTATION OF THE BANDED GARDEN SPIDER ARGIOPE TRIFASCIATA (ARANEAE, ARANEIDAE) IN A CALIFORNIA COASTAL POPULATION
Volume: 31Start Page: 405End Page: 41
Suppression of LPS-Induced TNF-α Production in Macrophages by cAMP Is Mediated by PKA-AKAP95-p105
The activation of macrophages through Toll-like receptor (TLR) pathways leads to the production of a broad array of cytokines and mediators that coordinate the immune response. The inflammatory potential of this response can be reduced by compounds, such as prostaglandin E_2, that induce the production of cyclic adenosine monophosphate (cAMP). Through experiments with cAMP analogs and multigene RNA interference (RNAi), we showed that key anti-inflammatory effects of cAMP were mediated specifically by cAMP-dependent protein kinase (PKA). Selective inhibitors of PKA anchoring, time-lapse microscopy, and RNAi screening suggested that differential mechanisms of PKA action existed. We showed a specific role for A kinase–anchoring protein 95 in suppressing the expression of the gene encoding tumor necrosis factor–, which involved phosphorylation of p105 (also known as Nfkb1) by PKA at a site adjacent to the region targeted by inhibitor of nuclear factor B kinases. These data suggest that crosstalk between the TLR4 and cAMP pathways in macrophages can be coordinated through PKA-dependent scaffolds that localize specific pools of the kinase to distinct substrates
Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca 2+
Miner1 is a redox-active 2Fe2S cluster protein. Mutations in Miner1 result in Wolfram Syndrome, a metabolic disease associated with diabetes, blindness, deafness, and a shortened lifespan. Embryonic fibroblasts from Miner1(−/−) mice displayed ER stress and showed hallmarks of the unfolded protein response. In addition, loss of Miner1 caused a depletion of ER Ca(2+) stores, a dramatic increase in mitochondrial Ca(2+) load, increased reactive oxygen and nitrogen species, an increase in the GSSG/GSH and NAD(+)/NADH ratios, and an increase in the ADP/ATP ratio consistent with enhanced ATP utilization. Furthermore, mitochondria in fibroblasts lacking Miner1 displayed ultrastructural alterations, such as increased cristae density and punctate morphology, and an increase in O(2) consumption. Treatment with the sulphydryl anti-oxidant N-acetylcysteine reversed the abnormalities in the Miner1 deficient cells, suggesting that sulphydryl reducing agents should be explored as a treatment for this rare genetic disease
Variability in G-Protein-Coupled Signaling Studied with Microfluidic Devices
Different cells, even those that are genetically identical, can respond differently to identical stimuli, but the precise
source of this variability remains obscure. To study this problem, we built a microfluidic experimental system which can track
responses of individual cells across multiple stimulations. We used this system to determine that amplitude variation in
G-protein-activated calcium release in RAW264.7 macrophages is generally extrinsic, i.e., they arise from long-lived variations
between cells and not from stochastic activation of signaling components. In the case of responses linked to P2Y family purine
receptors, we estimate that approximately one-third of the observed variability in calcium release is receptor-specific. We further
demonstrate that the signaling apparatus downstream of P2Y6 receptor activation is moderately saturable. These observations
will be useful in constructing and constraining single-cell models of G protein-coupled calcium dynamics