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Variability in G-Protein-Coupled Signaling Studied with Microfluidic
Devices
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†Department of Applied Physics and ‡Division of Biology, California Institute of Technology, Pasadena, California; §Center for HumanGenetics
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ABSTRACT Different cells, even those that are genetically identical, can respond differently to identical stimuli, but the precise
source of this variability remains obscure. To study this problem, we built a microfluidic experimental system which can track
responses of individual cells across multiple stimulations. We used this system to determine that amplitude variation in
G-protein-activated calcium release in RAW264.7 macrophages is generally extrinsic, i.e., they arise from long-lived variations
between cells and not from stochastic activation of signaling components. In the case of responses linked to P2Y family purine
receptors, we estimate that approximately one-third of the observed variability in calcium release is receptor-specific. We further
demonstrate that the signaling apparatus downstream of P2Y6 receptor activation is moderately saturable. These observations
will be useful in constructing and constraining single-cell models of G protein-coupled calcium dynamics.
INTRODUCTION
Many macroscopic events in the life of a mammal, from
development to T cell recruitment to carcinogenesis, arise
from events occurring in a single cell. To quantitatively
understand these processes, one needs to determine not
just average behaviors for a given cell population, but
also the distribution of behaviors in single cells. It is well
established that individual mammalian cells within a suppos-
edly homogenous culture can vary widely in their signal-
ing responses to external stimuli. In addition, in several
instances of note, the underlying distributions of single-
cell behavior look quite different from their bulk averages
(1,2).

Recent studies of variability in mammalian cell signaling
have used either long-lived protein-level changes that could
be observed with multiparameter flow cytometry (3), or
the use of matched daughter cells (4) as effective copies
of the same system. However, the former technique cannot
observe transient signaling events, while the latter by itself
does not provide information as to the molecular basis of
signaling variation. We show in this work that both of these
pitfalls can be avoided by observing cells under rapid,
sequential stimulation. Applying two identical stimuli in
rapid succession and then correlating responses on a cell-
by-cell basis allows long-lived variations in signaling sensi-
tivity to be discerned from stochastic noise that is different
for every response. In this mode, the experiment is the direct
signaling equivalent of two-color protein synthesis experi-
ments used to study noise in protein synthesis (5). In addi-
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tion, we show that correlating responses of individual cells
to different stimuli provides information on the specific
molecular contributors to signaling variation.

We used microfluidic devices to effect the requisite
switching of solutions for such experiments. Microfluidic
devices have been used in a broad range of applications in
cell biology, most prominently for their ability to perform
biochemical analyses on single cells (6–9) and their ability
to generate novel physical environments, such as stable
gradients, for the study of physiology (10,11). In this study,
we have used microfluidics to combine precise timing con-
trol with integration of multiple simultaneous experiments
into one field of view in the microscope. This latter feature
allowed us to rule out effects of subpopulational variability
(12), wherein samples of the same cell culture have been
observed to perform differently at different times, when
interpreting our data.

We used our experimental system to study variability in
G-protein signaling-induced calcium release in RAW264.7
macrophages. Briefly, at the plasma membrane of a mamma-
lian cell, an activated G-protein-coupled receptor (GPCR)
effects the exchange of GTP for GDP in a heterotrimeric
G-protein, causing the G-protein to dissociate into the
a-subunit and the bg complex. Either dissociation product
may activate phospholipase C (PLC), which cleaves phos-
phatidylinositol 4,5-diphosphate to release inositol 1,4,5-
triphosphate (IP3). The IP3 then diffuses to the endoplasmic
reticulum and binds to its cognate receptor, IP3R, which
allows release of calcium from the ER store into the cyto-
plasm as a second messenger. Calcium release can be
measured easily using standard fluorescence microscopy
techniques, and several groups have demonstrated measure-
ments of variability in single cell calcium dynamics using
microfluidic devices (13–15).
doi: 10.1016/j.bpj.2010.08.043
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We observed that, for all the ligands that we have tested,
most of the associated signaling variability arises from long-
lived cell state differences and not from stochasticity in the
signal transmission process. Cell-state differences persist, at
least, for hours, and likely involve differences in either
protein expression levels or protein-protein interactions.
We then focused on signaling through members of the
P2Y family of purine receptors, and estimated that approx-
imately one-third of the variability in signal transmission in
those receptors is directly associated with the cognate
receptor. Finally, we obtained evidence suggesting that the
P2Y6 receptors can partially saturate their downstream
signaling partners. Our experimental platform offers a path
to identify specific molecular contributors to signaling vari-
ability. Moreover, our results here both validate existing
modeling of populational calcium response, and provide
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MATERIALS AND METHODS

Materials and Methods may be found in the Supporting Material.
RESULTS

Device design

Data presented in this article were obtained using two
different microfluidic device designs, shown in Fig. 1, a
and b, built around a common central core which is dis-
played in greater detail in Fig. 1 c. The devices use inte-
grated microvalves to gate flow within the flow layer.
E

2 mm

Timing control ports

Secondary
flush inlet

Waste

FIGURE 1 Device design and seed-

ing. In panels A–C, flow layer features

are in cool tones, with rounded features

(45 mm peak height) in dark blue,

unrounded high features (25 mm) in

light blue, and unrounded low features

(10 mm) in violet. Control layer fea-

tures, all unrounded, are shown in

warm tones, either red (high features,

40 mm) or yellow (low features, 10 mm),

overlaid atop the flow layer features.

(A) Design of the differential perfusion

device, with one inlet for each cell

channel. The media inlet flow resistor

(solid arrowhead) allows very slow

perfusion of the device, and the cell

strainer (outlined arrowhead) traps

cell clumps that may otherwise clog

the device. (B) Design of the differen-

tial timing device, with additional

control lines to apply solutions at

different times for the different cell

channels. (C) Expanded version of the

central structure in panel B; the corre-

sponding region of panel A is very

similar. Cells reside within the set of

six high, unrounded channels (flow

direction indicated by the black arrow).

Numbered device features are as

follows: 1. Main inlet into the central

structure, which delivers cells, media,

stimulating ligands, etc. 2. Waste outlet.

3. Bypass valves used in cell injection

(see panel D). 4. Channel isolation

valves, actuated once cells are injected.

aste port. 6. Separation valves that determine which channels are perfused

ly right-side channels during timing experiments (see Fig. S1 f). 8. Shunt for

nnels, along with corresponding access valve. Details on how these features

n panel E for loading channels with cells while avoiding crushing damage to

elD. Scale bar in panel E is 300 mm. All flow features in panelD are shown

e indicating channels where flow is expected to be stagnant. Some control

Cell suspension is initially injected into the central cross channels (top).

ies. Once channels are seeded with cells, flow is diverted to bypass channels

with clean media (middle) without washing cells out of the cross channels.

tirely (bottom) to allow cells to adhere.
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An array of six channels holds cells for culturing and
stimulation, with outlets that go to the waste port and inlets
that could be connected to a common inlet manifold. Flow
constrictions upstream and downstream moderate and
equalize flow rates, in direct analogy to the use of resistors
in electrical circuits. In addition, one version of the device
(Fig. 1 a) allows each cell channel to be connected to an
individual inlet port, and the other (Fig. 1 b) allows channels
to be connected to inlet ports either on the left or on the
right, allowing for alternate solution flushes that could
sweep across the device with defined timings. A detailed
description of these procedures appears as Fig. S1 in the
Supporting Material.
Cell injection and culturing

The use of integrated microvalves within devices demanded
control over cell positioning, because otherwise cells
within an actuating valve would be crushed, releasing their
contents, which could contaminate downstream experi-
ments. Other groups have used protein micropatterning to
determine placement of cells, but preventing adhesion of
RAW264.7 cells is difficult due to the presence of macro-
phage scavenger receptors. Instead, we controlled cell
placement using hydrodynamics, with a structure analogous
to electrical bridge circuits (16) that allowed us to seed cells
into the central array of channels and then wash cells out
of the rest of the device with clean media. The injection
scheme and corresponding pictures demonstrating its imple-
mentation are shown in Fig. 1, d and e, and a movie of the
injection process is available as Movie S2 in the Supporting
Material. This seeding technique is fast, requiring only ~1 h
to prepare and seed the device, and very general, dependent
only on the ability to prepare a suspension of single cells
which can adhere to channel walls. In addition to cells of
the RAW264.7 macrophage cell line, we have injected and
cultured bone marrow-derived macrophages and HEK293
cells. After designing and validating our injection scheme,
we learned of cell microtraps (14,17), which are another
solution to the problem of retaining cells within parts of
the device while the rest is washed clear of cells. We note
that we regularly observed at least three times as many cells
per unit area as can be trapped in such cell arrays, due to the
device area consumed by the traps themselves and the need
for gaps between traps to allow fluid flow.

Cells were cultured either with constant perfusion at
0.07 mL/h/channel (5 mm/s linear velocity in the middle of
the channel), or intermittent perfusion at 0.5 mL/h/channel
(40 mm/s) for 1 min out of every hour. The higher flow
rate corresponds to 0.06 dyne/cm2, well below shear stresses
of physiological relevance. During cell staining and stimula-
tion, flushes occurred at ~1.5 dyne/cm2 (0.9 mm/s). Cells
experienced the most shear, ~12 dyne/cm2 (7.5 mm/s),
briefly during the initial application of ligands; this shear
stress has been known to elicit physiological responses.
Biophysical Journal 99(8) 2414–2422
However, there was little difference in responses between
cells near the center of the channels, where the shear stress
was highest, and cells near the channel walls, which were
more protected from flow shear (Fig. S3). In addition, we
observed no calcium responses when cells were mock-stim-
ulated with assay media devoid of ligands. We therefore
conclude that the shear forces to which cells were exposed
did not compromise our calcium data.

In addition to the presence of shear flow, conditions
within our microfluidic system differ from standard cell
culturing conditions in terms of media volume per cell:
~20 pL per cell in our devices versus ~1 nL per cell in
a tissue culture plate. Thus, we considered the possibility
that they might deplete metabolites during culturing. Precise
metabolic data for RAW264.7 cells are unavailable, but
oxygen consumption of RAW cells has been measured at
115 fmol O2 per cell per hour (18), implying glutamine
(19) and glucose consumption rates that both intermittent
and continuous perfusion are able to support. Oxygen avail-
ability itself is not expected to limit cellular growth due
to the high gas permeability of our microfluidic devices.
Further, the amount of amino acids present in a channelful
of medium is expected to be sufficient to support protein
synthesis for >1 h. While it is possible that other factors
in the media, such as vitamins or serum components, will
become limiting for cell growth, we observed normal cal-
cium responses for cells grown in devices overnight with
intermittent perfusion (compare Fig. S7 with Fig. 4 a), so
any such effects are not expected to strongly affect calcium
signaling.
Observation of calcium dynamics

We performed live-cell calcium imaging studies of
RAW264.7 macrophage cells stimulated with GPCR
ligands. Fig. 2 shows the results of typical experiments of
calcium release in RAW cells arising from stimulation
with the nucleotide uridine 50-diphosphate (UDP). Each
cell-bearing channel in the device could be treated with
a different concentration of UDP. Channels contained
between 100 and 300 cells each, and could be stimulated
identically to obtain more statistical power when necessary.

While entire time courses were taken of all cells
(Fig. 2 a), we limit ourselves here to analyzing the peak
rise in cytosolic calcium above the prestimulus baseline
value. We used the magnitude of the maximal rise in cal-
cium concentration, rather than the peak calcium con-
centration itself, because often the changes in calcium
concentration were of similar or smaller magnitude than
the baseline calcium concentration; quoting the absolute
calcium concentrations would have implied a response
where none existed. Henceforth the terms calcium response
and calcium response amplitude shall always denote the
peak change in calcium level in response to agonist. Using
this metric, we obtained dose-response results from a typical
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experiment (Fig. 2 c) that gave an EC50 of 343 5 73 nM,
comparable to those reported in the literature for IP3 release
arising from P2Y6 receptor activation (300 nM; (20)), and in
addition gave response population distributions (Fig. 2 b)
that are typically inaccessible in bulk experiments.
Kinetic experiments

Our microfluidic devices allowed us to perform repeated
stimulations of cells. However, to be able to compare a cell’s
responses to two different stimuli, we first needed to ensure
that the cell is able to fully recover from the first stimulus
before applying the second. UDP stimulation triggers a
strong release of calcium stores, so we were interested in
the recovery of those stores after ligand washout. Fig. 3, a
and b, show that the stores generally recover within
2–3 min, so we set the interstimulus washout time to 4 min.
Further experimentation showed that recovery of the cal-
cium response amplitude followed similar kinetics (data
not shown). We wished to further minimize effects of the
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initial stimulus by shortening it, but measurement of the
time course of calcium store depletion showed that most
of the store depletion occurs during the first 15 s of the
calcium response (Fig. 3 b). Because calcium responses
could peak rather slowly with lower ligand doses or lower
cellular responsiveness, we chose a stimulation time of 60 s.

During the recovery experiments, we noticed that subse-
quent calcium response amplitudes tended not to recover to
100% of the response amplitudes to the initial stimulus,
though they usually did reach between 80% and 90%.
This effect was observed for all nucleotide ligands used in
this work. We wondered if the effect indicated receptor
desensitization (reviewed in (21)), and indeed we were
able to measure desensitization kinetics of the receptor
to the anaphylatoxin C5a in RAW264.7 cells. That the
decrease in C5a responses seen in our experiments is
indeed receptor desensitization is confirmed by observation
of slower kinetics upon RNAi knockdown of the G receptor
kinases (GRKs) responsible for initiation of the receptor
desensitization mechanism ((22) Fig. S4). However, desen-
sitization of P2Y receptors has not been reported in
RAW264.7 macrophages, and such desensitization did not
appear to occur in our experiments. We tested this by
comparing two sets of cells in the same device, of which
only one set underwent the initial stimulation. The response
amplitudes of the two sets of cells to the second stimulation
were not significantly different (Fig. S5). Our interpretation
of the mild reduction seen in calcium response amplitudes
is that some part of the experiment, perhaps photobleaching
of calcium indicator, gradually reduces the amplitude of
cellular calcium responses in a general way. This effect is
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independent of the stimulus applied to cells, and small
enough that it does not greatly alter the correlation between
different rounds of stimulus (see below).

In support of this interpretation, we found that channel-
to-channel variability was magnified in those experiments
where each channel was stimulated at a different time
(Fig. S6). The changing cellular physiology over short
time periods underscores the necessity of performing
matched controls in parallel with experiments.
Correlating sequential responses

To establish the repeatability of calcium responses, we first
rechallenged the cells with exactly the same stimulus.
Calcium responses to identical stimulations were always
well correlated (usually r z 0.9) on a cell-by-cell basis
(Fig. 4, a–c; Table S8). This clearly demonstrates that
cell-to-cell GPCR signaling variation arises from variations
in cellular state, such as protein expression levels, rather
than stochasticity in the signal transmission process (5).
We note that this is not unexpected, because none of the
molecular species in the signal transduction pathway are ex-
pected to be present at copy numbers <1000 (23), and has
been observed in other cell lines (24).

This observation appears to be independent of the
G-protein coupling of the cognate receptors, and indepen-
dent of the desensitization. First and second responses,
when they were to the same ligand, were well correlated
for all ligands tested: the nucleotides UDP, uridine 50-
triphosphate (UTP), and adenosine 50-triphosphate (ATP),
whose cognate receptors couple to PLCb via Gaq/11 and
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do not desensitize; platelet-activating factor (PAF), which
couples predominantly via Gaq/11 but does desensitize
(25); and C5a, which couples to Gai (26) and is known
to desensitize via receptor phosphorylation and internaliza-
tion. Correlation data for the nucleotides are summarized in
Table 1, and data for all ligands are shown in Table S8. The
low degree of intrinsic signaling variation thus appears to be
a general phenomenon. The strong correlations observed
here also indicate that the slow signal response reductions
noted in the previous subsection do not contribute appre-
ciably to the variability in calcium responses.

Because the cells in our devices were subjected to strong
confinement, it was in principle possible that much of the
observed variations in signaling arose from variations in
local conditions to which cells were exposed. These varia-
tions could be, for instance, in metabolite or signaling mole-
cule concentrations, or in the degree or nature of cell-to-cell
contacts. To understand the nature of the observed signaling
variation, we cultured cells for 24 h in our device and
tracked cell divisions, so that we could identify both
daughter cells from individual cell division events and
then correlate their calcium responses. As in the case of
apoptotic signaling (4), responses of sister cells correlated
strongly. At the same time, we could consider all pairs
of cells closer together than the mean daughter cell pair,
and doing so abolishes the observed response correlation
(Fig. S7).

Signaling variation could also occur over longer dis-
tances, because upstream cells may secrete or deplete
factors that affect the physiology of downstream cells. We
tested for the influence of these effects by comparing cal-
cium responses in cells in the upstream one-third of
channels against responses in cells in the downstream one-
third. Using the Mann-Whitney signed rank test for both
first and second responses in all the experiments listed in
Table S8, we found significant (p < 0.05) differences in
nine of 58 such comparisons. Within those comparisons,
linear regression of responses against cells’ positions along
the channels gave correlation coefficients r2 > 0.02 in only
one experiment; removing those data from our analysis does
not change any of the conclusions (Table S8). If we assume
TABLE 1 Correlations between responses to nucleotides

UTP UDP ATP

UTP 0.889 5 0.013 0.638 5 0.040 0.843 5 0.004

UDP 0.903 5 0.007 0.564 5 0.031

ATP 0.902

Mean correlation coefficients (r) across different experiments, along with

associated standard errors (n between 3 and 5, except for the ATP-ATP

experiment, which we only performed once). Correlations were averaged

without regard to order of ligand application. Ligand doses were either 1

or 2 mM; both doses are expected to saturate the cognate receptors without

cross-activation of other receptors. ATP stimulation was in the presence of 3

mM EDTA, to prevent entry of extracellular calcium via P2X channels (34).

See Table S8 for a detailed breakdown of the data.
that effects observed here extrapolate linearly with channel
length, then the correlation coefficients r2 should scale as
the square of the channel length. Thus, differences between
upstream and downstream cells may potentially become sig-
nificant contributors to overall signaling variance (r2 > 0.1)
as the length of channel under observation increases beyond
twice that of the present experiments (i.e., >2.6 mm). We
are actively working on altering the design of our devices
to explore this issue.

The correlation between calcium responses of sister cells,
the lack of such correlation between neighboring cells, and
the paucity of apparent differences between upstream and
downstream cells, argue strongly that inherent, cell-to-
cell differences in protein levels and configurations, and
not differences in environmental conditions, underlie the
observed variations in calcium responses. The observed
cell division events occurred an average of 16 h before stim-
ulation, so cell state differences must persist for at least that
length of time.

That the calcium responses were consistent across
consistent stimuli allowed us to explore further the source
of signaling variation. We stimulated cells first with ATP
and then with UDP. Cognate receptors for both ligands
couple through Gaq/11 (26,27). Thus, any differences
between responses to these two ligands must arise from
differences that are directly associated with their cognate
receptors. As shown in Fig. 4 d, responses to these
two ligands were much less correlated with each other;
r z 0.6. Additionally, the UDP responses were similarly
correlated with another ligand that signals through Gaq/11

(r z 0.6 between UDP and PAF; Fig. 4 e), and much
less with one that signals through Gai (r z 0.3 between
UDP and C5a; Fig. 4 f).

We then systematically analyzed correlations between
responses to the nucleotides ATP, UDP, and UTP, all of
which signal via P2Y family receptors. To maximize
response amplitudes while controlling for receptor cross-
reaction, we used ligand concentrations that were modestly
higher than their Kd values. Correlations are shown in
Table 1 and Table S8, and the strong correlation between
ATP and UTP corresponds nicely to the known ability of
both P2Y2 and P2Y4 to respond to either ligand.

That ATP and UDP signal almost entirely through distinct
receptors—ATP through P2Y2 and P2Y4 (27), and UDP
through P2Y6 (28)—which couple to identical downstream
effectors allows us to estimate the fraction of signaling
noise contributed by receptor-specific effects. Consider
two random variables, Y and Z, that describe the observed
single-cell responses to two different ligands. We can
decompose these into a common source of variation, x;
separate, receptor-specific contributions, y and z; and sig-
naling stochasticity d,�

Y ¼ x þ y þ dY
Z ¼ x þ z þ dZ

:

Biophysical Journal 99(8) 2414–2422



 100

 150

 200

 250

2420 Bao et al.
Then the correlation coefficient between the two random
variables is

rYZ ¼ hYZi � hYihZiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞvarðZÞp ;

where var(.) denotes the variance of the bracketed quan-
tity. To obtain a rough estimate of the underlying variances,
we approximate that x, y, and z are all uncorrelated with each
other, and that var(y) z var(z) and var(dY) z var(dZ). This
gives, simply, (

rYZz
varðxÞ

varðxÞþ varðzÞþ varðdÞ
rZZz

varðxÞþ varðzÞ
varðxÞþ varðzÞþ varðdÞ;

where rZZ is the correlation between the first and second
responses when they are to the same stimulus. Therefore,
the fraction of cell-to-cell intrinsic variability attributable
to receptor-specific effects is

varðzÞ
varðxÞ þ varðzÞz1� rYZ

rZZ
:

Comparing calcium response amplitudes to UDP stimulus
with those to ATP stimulus, we obtain an estimate of ~38%
(close to one-third) contribution from receptor-specific
sources.

Because the expected source of signaling noise is down-
stream of the receptors, rather than in parallel, one may
make the argument that the contributions multiply instead
of add. For instance, at a given ligand dose, there might
be independent variation in 1), the number of receptors acti-
vated; and 2), the amount of calcium released by each
receptor. In this case we have Y ¼ xy and Z ¼ xz (ignoring
the small contributions from signaling stochasticity), and
the above analysis can be applied to correlations between
log-transformed data. Interestingly, modifying the analysis
in this way does not change the correlation coefficients
markedly (Table S8).
 0

 50

 0  40  80  120

Response to 100 nM UDP (nM Ca2+)

FIGURE 5 Scatter plot, similar to those shown in Fig. 4, showing

responses to different doses of the same ligand. Cells were stimulated

with 100 nM UDP for 1 min, washed for 4 min, and then stimulated with

1 mM UDP for 1 min. The scatter deviates significantly from a straight

line passing through the origin, demonstrating clear nonlinearity in the

responses. For instance, whereas cells that responded with 25 nM Ca2þ

to stimulation at 100 nM UDP could respond almost fourfold higher to

1 mM UDP, those that responded with 120 nM Ca2þ to 100 nM UDP

responded less than twofold higher to 1 mM UDP. Note that the x axis

has been expanded relative to the y axis to emphasize the nonlinearity.

Curved line here represents the best downstream saturation model fit (see

Materials and Methods and Results).
Downstream saturation

Instead of stimulating the signal transduction system
at different receptors, we could also stimulate the same
receptor at different strengths, i.e., different agonist concen-
trations. If all of the cell-to-cell variability arose from
receptor level variations, then each cell in this paired
assay—with its unique amount of receptor—would consti-
tute a different natural experiment on the dose-response
relationship of the downstream signal transmission system.
A few such assays could, in theory, provide enough informa-
tion to reconstruct the entire downstream dose-response
curve. The results so obtained would necessarily be indirect,
but would have the advantage of being produced without
any modifications to the system being observed.
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Of course, downstreamprocesses do contribute a large part
of the signaling variability, and these are expected to con-
found our measurements of the downstream signaling
system. Despite this potential problem, we still observed
significant structure within our experimental results. One
such experiment, stimulating cells with UDP first at 100 nM
and then at 1mM, is shown in Fig. 5. Note the clear curving of
the response scatter plot, where cells that respond strongly to
100 nM of UDP do not greatly increase their responses when
the stimulating UDP concentration is increased 10-fold. We
hypothesized that this occurred because cells have a natural
maximum calcium response amplitude. Those cells that
express high amounts of receptor on their surfaces reach
that maximum response with the lower dose of ligand, so
that the increase in ligand dose on the second stimulation fails
to increase the calcium response.

We used this downstream saturation hypothesis to derive
a fitting function for the UDP response correlation data, and
the optimized fit curve (shown) improves the fitting resid-
uals significantly (p < 10�10; see Materials and Methods).
We observed statistically significant curving in the response
scatter plots from all such experiments (n ¼ 3; p < 10�4

in all cases), including one where the order of the stimula-
tions was reversed and the opposite curvature observed.
The fits gave a maximal calcium response amplitude of
270 5 56 nM Ca2þ, with a receptor activation ratio of
3.60 5 0.75, corresponding to a half-saturating does
of 448 5 178 nM for P2Y6 receptor activation (all values
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shown here are mean 5 SE). The half-saturating dose is
marginally larger than the EC50 derived from our calcium
release dose-response curve, consistent with the notion of
saturation in the downstream signaling system contributing
to saturation of the overall response.
DISCUSSION

Our experiment combined three features that allowed us to
make novel observations of variability in G protein-coupled
signaling.

First, we took advantage of the existence of G protein-
coupled receptors that do not desensitize, so that any given
cell’s responses to multiple stimulations could be meaning-
fully compared.

Second, our use of microfluidic devices allowed us to
deliver those stimulations within minutes of each other,
eliminating possible confounding effects of transcriptional
effects arising from the initial stimulus. The microfluidic
devices, moreover, allowed rapid determination of optimal
stimulation timings.

Third, we used a cell line that endogenously expresses
multiple receptors which couple to identical molecules in
the downstream pathway. This allowed us to determine the
relative contributions of different parts of the signaling
pathway to the observed signaling variability.

That our correlation results for nucleotide ligands
matched closely to the known ligand specificities of their
cognate receptors strongly supports the use of these correla-
tions for determining the sources of signal transmission
variability. Our results for nucleotides indicate that approx-
imately one-third of this variability is directly associated
with the ligand. We expect that this variability arises from
variation in receptor expression levels, but note that that
is not the only possible explanation. Because activated
G proteins diffuse little before they become inactive again
(29), differences in receptor colocalization with G proteins
or PLCbs can also give rise to receptor-specific signaling
variability. In addition, physical interactions between recep-
tors may modulate function (30).

These different possibilities may be experimentally trac-
table using fluorescence labeling techniques. For instance, if
suitable antibodies against P2Y receptors exist, these could
be used to quantify receptor expression levels on cells at the
end of calcium experiments or to characterize correlations
between expression levels of different P2Y receptors on
the cell population being studied. Fluorescent fusion protein
expression is another possible experimental approach,
though with the caveat that such experiments would alter
receptor expression levels.
Implications for modeling efforts

Our experiments provide novel measurements of the
response distribution of cell populations against which
computational models of signaling may be evaluated. In
particular, recent work on understanding the synergy
between UDP and C5a in eliciting calcium release (23), if
extended to consider single-cell variations, would be con-
strained because they would need to reproduce the correla-
tions between UDP and C5a responses measured here.

One major caveat for quantitative modeling of averaged
data in biological systemshas been the potential for the under-
lying system to be highly nonlinear. This nonlinearity, in
conjunction with cell-to-cell variability, has the potential to
mask important effects that can only be resolved with single
cell measurements (1). In this case, even though our data
strongly suggest the presence of nonlinearity in the down-
stream G protein-triggered calcium response, the degree of
nonlinearity is rather modest: downstream saturation only
appears to have changed the EC50 of UDP by ~25%. Thus,
saturation effects will likely not interfere strongly with exist-
ing modeling of bulk biochemical data (12,23).

Another insight from our results is that most of the vari-
ability seen inG-protein-coupled calcium release arises quite
far upstream: even though C5a and UDP exhibit very similar
PLCb dependencies (26), their responses are quite poorly
correlated. Therefore, when analyzing entire time courses
instead of just peak responses, those peak responses can be
used to narrow the search range of receptor and G protein
levels, so that the shape of the subsequent response decay
can be more effectively used to estimate other parameters
in the signaling model. Our observations suggest that expres-
sion levels of downstream calcium-handling components are
more consistent between cells; such a conclusion is partially
corroborated by recent reports (24).

Finally, our data point to an interesting observation about
variability in GRK expression levels. Recall that responses
to repeated stimulations were strongly correlated even for
stimulationwith C5a,whose responses showed clear evidence
of desensitization. Put another way, even though cells re-
spondedmuchmoreweakly to a secondC5a stimulus, the ratio
between the first and second responses was quite consistent,
thereby giving a large correlation coefficient. Strong binding
ofC5a (31) probably contributes to this consistency.However,
because C5a desensitization kinetics are slowed upon GRK
knockdown (Fig. S4), consistency in calcium responses to
C5a also suggests that there was little variation in GRK
activitybetweendifferent cells in our experiments. This obser-
vation will reduce the number of free parameters needed to
model single cell behaviors in RAW264.7 macrophages.
CONCLUSIONS

Microfluidic devices provide unique opportunities to
enhance the richness of single-cell data collected using
microscopy. We have shown here that, in addition to
engineering physical parameters of cells’ environs
(10,11,32,33), microengineered devices can also allow
deep probing of signaling pathways by allowing multiple
Biophysical Journal 99(8) 2414–2422
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stimulations on the same cells. We have used this technique
to show that variability in G protein-coupled calcium release
is mostly extrinsic, quantify the fraction of extrinsic varia-
tion that is receptor-specific, and infer that the signaling
pathway downstream of receptor activation is saturable.
While similar results may have been possible with perfusion
flow cells, the inclusion of multiple different chambers
within one microscope field of view allowed incorporation
of matched control experiments that greatly eased interpre-
tation of our data. At the same time, the constant perfusion
allowed easy washout of ligands with little risk of carryover,
which is difficult to achieve with automated plate-based
assays. We believe the application of microfluidic tech-
nology will greatly enhance the richness, quality, and
throughput of imaging-based signaling experiments.

SUPPORTING MATERIAL

Additional materials and methods, six figures, one table, and one movie are
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