1,792 research outputs found
Development and validation of computational models of cellular interaction
In this paper we take the view that computational models of biological systems should satisfy two conditions –
they should be able to predict function at a systems biology level, and robust techniques of validation against
biological models must be available. A modelling paradigm for developing a predictive computational model of
cellular interaction is described, and methods of providing robust validation against biological models are
explored, followed by a consideration of software issues
Agent-based computational modeling of wounded epithelial cell monolayers
Computational modeling of biological systems, or ‘in silico biology’ is an emerging tool for understanding structure and order in biological tissues. Computational models of the behavior of epithelial cells in monolayer cell culture have been developed and used to predict the healing characteristics of scratch wounds made to urothelial cell cultures maintained in low and physiological [Ca2+] environments. Both computational models and in vitro experiments demonstrated that in low exogenous [Ca2+], the closure of 500mm scratch wounds was achieved primarily by cell migration into the denuded area. The wound healing rate in low (0.09mM) [Ca2+] was approximately twice as rapid as in physiological (2mM) [Ca2+]. Computational modeling predicted that in cell cultures that are actively proliferating, no increase in the fraction of cells in S-phase would be expected, and this conclusion was supported experimentally in vitro by BrdU incorporation assay. We have demonstrated that a simple rule-based model of cell behavior, incorporating rules relating to contact inhibition of proliferation and migration, is sufficient to qualitatively predict the calcium-dependent pattern of wound closure observed in vitro. Differences between the in vitro and in silico models suggest a role for wound-induced signaling events in urothelial cell cultures
An agent-based model of anoikis in the colon crypt displays novel emergent behaviour consistent with biological observations
Colorectal cancer (CRC) is a major cause of cancer mortality.
Colon crypts are multi-cellular flask-shaped invaginations of
the colonic epithelium, with stem cells at their base which
support the continual turnover of the epithelium with loss
of cells by anoikis from the flat mucosa. Mutations in these
stem cells can become embedded in the crypts, a process
that is strongly implicated in CRC initiation. We describe a
computational model which includes novel features, including
an accurate representation of the geometry of the crypt
mouth. Model simulations yield previously unseen emergent
phenomena, such as localization of cell death to a small region
of the crypt mouth which corresponds with that observed
in vivo. A mechanism emerges in the model for regulation
of crypt cellularity in response to changes in either cell
proliferation rates or membrane adhesion strengths. We show
that cell shape assumptions influence this behaviour, with
cylinders recapitulating biology better than spheres. Potential
applications of the model include determination of roles of
mutations in neoplasia and exploring factors for altered crypt
morphodynamics
The Epitheliome: agent-based modelling of the social behaviour of cells
We have developed a new computational modelling paradigm for predicting the emergent behaviour
resulting from the interaction of cells in epithelial tissue. As proof-of-concept, an agent-based model,
in which there is a one-to-one correspondence between biological cells and software agents, has been
coupled to a simple physical model. Behaviour of the computational model is compared with the
growth characteristics of epithelial cells in monolayer culture, using growth media with low and
physiological calcium concentrations. Results show a qualitative fit between the growth characteristics
produced by the simulation and the in vitro cell models
Three point SUSY Ward identities without Ghosts
We utilise a non-local gauge transform which renders the entire action of
SUSY QED invariant and respects the SUSY algebra modulo the gauge-fixing
condition, to derive two- and three-point ghost-free SUSY Ward identities in
SUSY QED. We use the cluster decomposition principle to find the Green's
function Ward identities and then takes linear combinations of the latter to
derive identities for the proper functions.Comment: 20 pages, no figures, typos correcte
The VPH Hypermodelling framework for cancer multiscale models in the clinical practice
The VPH Hypermodelling framework is a collaborative computational platform providing a complete Problem Solving Environment to execute, on distributed computational architectures, sophisticated predictive models involving patient medical data or specialized repositories. In the CHIC' project, it will be enhanced to support clinicians in providing prompt personalised cancer treatments. It supports several computational architectures with strict security policies
Spin diffusion at finite electric and magnetic fields
Spin transport properties at finite electric and magnetic fields are studied
by using the generalized semiclassical Boltzmann equation. It is found that the
spin diffusion equation for non-equilibrium spin density and spin currents
involves a number of length scales that explicitly depend on the electric and
magnetic fields. The set of macroscopic equations can be used to address a
broad range of the spin transport problems in magnetic multilayers as well as
in semiconductor heterostructure. A specific example of spin injection into
semiconductors at arbitrary electric and magnetic fields is illustrated
Effect of diffusive boundaries on surface superconductivity in unconventional superconductors
Boundary conditions for a superconducting order parameter at a diffusive
scattering boundary are derived from microscopic theory. The results indicate
that for all but isotropic gap functions the diffusive boundary almost
completely suppresses surface superconductivity in the Ginzburg-Landau regime.
This indicates that in anisotropic superconductors surface superconductivity
can only be observed for surface normals along high symmetry directions where
atomically clean surfaces can be cleaved.Comment: Latex File, 12 pages, 2 Postscript figures, to appear in Phys. Rev. B
(June 1 1996
Phase synchronization and noise-induced resonance in systems of coupled oscillators
We study synchronization and noise-induced resonance phenomena in systems of
globally coupled oscillators, each possessing finite inertia. The behavior of
the order parameter, which measures collective synchronization of the system,
is investigated as the noise level and the coupling strength are varied, and
hysteretic behavior is manifested. The power spectrum of the phase velocity is
also examined and the quality factor as well as the response function is
obtained to reveal noise-induced resonance behavior.Comment: to be published in Phys. Rev.
The hierarchical stability of the seven known large size ratio triple asteroids using the empirical stability parameters
In this study, the hierarchical stability of the seven known large size ratio triple asteroids is investigated. The effect of the solar gravity and primary’s J(2) are considered. The force function is expanded in terms of mass ratios based on the Hill’s approximation and the large size ratio property. The empirical stability parameters are used to examine the hierarchical stability of the triple asteroids. It is found that the all the known large size ratio triple asteroid systems are hierarchically stable. This study provides useful information for future evolutions of the triple asteroids
- …
