1,306 research outputs found

    Low back pain: A major global problem for which the chiropractic profession needs to take more care

    Get PDF
    An important series of papers have been published in the Lancet. These papers provide a comprehensive update for the major global problem of low back pain, and the challenges that low back pain presents to healthcare practitioners and policy makers. Chiropractors are well placed to reduce the burden of low back pain, but not all that chiropractors do is supported by robust, contemporary evidence. This commentary summarises the Lancet articles. We also make suggestions for how the chiropractic profession should most effectively help people with low back pain by implementing practices supported by high quality evidence

    Spinal manipulative therapy, Graston techniqueÂź and placebo for non-specific thoracic spine pain: A randomised controlled trial

    Get PDF
    Background Few controlled trials have assessed the efficacy of spinal manipulative therapy (SMT) for thoracic spine pain. No high quality trials have been performed to test the efficacy and effectiveness of Graston Technique¼ (GT), an instrument-assisted soft tissue therapy. The objective of this trial was to determine the efficacy of SMT and GT compared to sham therapy for the treatment of non-specific thoracic spine pain. Methods People with non-specific thoracic pain were randomly allocated to one of three groups: SMT, GT, or a placebo (de-tuned ultrasound). Each participant received up to 10 supervised treatment sessions at Murdoch University chiropractic student clinic over a 4 week period. The participants and treatment providers were not blinded to the treatment allocation as it was clear which therapy they were receiving, however outcome assessors were blinded and we attempted to blind the participants allocated to the placebo group. Treatment outcomes were measured at baseline, 1 week, and at one, three, six and 12 months. Primary outcome measures included a modified Oswestry Disability Index, and the Visual Analogue Scale (VAS). Treatment effects were estimated with intention to treat analysis and linear mixed models. \ud Results One hundred and forty three participants were randomly allocated to the three groups (SMT = 36, GT = 63 and Placebo = 44). Baseline data for the three groups did not show any meaningful differences. Results of the intention to treat analyses revealed no time by group interactions, indicating no statistically significant between-group differences in pain or disability at 1 week, 1 month, 3 months, 6 months, or 12 months. There were significant main effects of time (p  < 0.01) indicating improvements in pain and disability from baseline among all participants regardless of intervention. No significant adverse events were reported. Conclusion This study indicates that there is no difference in outcome at any time point for pain or disability when comparing SMT, Graston Technique¼ or sham therapy for thoracic spine pain, however all groups improved with time. These results constitute the first from a fully powered randomised controlled trial comparing SMT, Graston technique¼ and a placebo

    The relationship of leaf photosynthetic traits - V-cmax and J(max) - to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study

    Get PDF
    Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm−2), increasing leaf P from 0.05 to 0.22 gm−2 nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting

    The hierarchical stability of the seven known large size ratio triple asteroids using the empirical stability parameters

    Get PDF
    In this study, the hierarchical stability of the seven known large size ratio triple asteroids is investigated. The effect of the solar gravity and primary’s J(2) are considered. The force function is expanded in terms of mass ratios based on the Hill’s approximation and the large size ratio property. The empirical stability parameters are used to examine the hierarchical stability of the triple asteroids. It is found that the all the known large size ratio triple asteroid systems are hierarchically stable. This study provides useful information for future evolutions of the triple asteroids

    Near-field spatial and temporal blast pressure distributions from non-spherical charges: Horizontally-aligned cylinders

    Get PDF
    Research into the characterisation of blast loading on structures following the detonation of a high explosive commonly assumes that the charge is spherical. This has the advantage of simplifying experimental, analytical and computational studies. In practice, however, designers of protective structures must often consider explosive threats which have other geometric forms, which has significant influence on the loading imparted to structures very close to the explosion source. Hitherto, there has been little definitive experimental investigation of the ‘near-field’ blast load parameters from non-spherical explosive charges and studies that have been conducted are usually confined to measurement of the total impulse imparted to a target. Currently, a detailed understanding of the development of loading on a target, necessary to fully inform the design process and appraise the efficacy of predictions from computational models, is lacking. This article, the first part of a wider investigation into these geometrical effects, details work conducted to address this deficiency. Results are presented from an experimental study of loading from detonations of cylindrical charges, set with the longitudinal axis parallel to an effectively rigid target, instrumented to facilitate the capture of the spatial and temporal evolution of the loading at different radial and angular offsets from the charge. These results are compared against loads from spherical charges and the effect of charge shape is identified. Significant differences are observed in the mechanisms and magnitude of loading from cylindrical and spherical charges, which is confirmed through the use of numerical analysis. The overall study provides insights which will assist the future design of effective protection systems

    The future of sovereignty in multilevel governance Europe: a constructivist reading

    Get PDF
    Multilevel governance presents a depiction of contemporary structures in EU Europe as consisting of overlapping authorities and competing competencies. By focusing on emerging non-anarchical structures in the international system, hence moving beyond the conventional hierarchy/anarchy dichotomy to distinguish domestic and international arenas, this seems a radical transformation of the familiar Westphalian system and to undermine state sovereignty. Paradoxically, however, the principle of sovereignty proves to be resilient despite its alleged empirical decline. This article argues that social constructivism can explain the paradox, by considering sovereign statehood as a process-dependent institutional fact, and by showing that multilevel governance can feed into this process

    Conserved Quasilocal Quantities and General Covariant Theories in Two Dimensions

    Full text link
    General matterless--theories in 1+1 dimensions include dilaton gravity, Yang--Mills theory as well as non--Einsteinian gravity with dynamical torsion and higher power gravity, and even models of spherically symmetric d = 4 General Relativity. Their recent identification as special cases of 'Poisson--sigma--models' with simple general solution in an arbitrary gauge, allows a comprehensive discussion of the relation between the known absolutely conserved quantities in all those cases and Noether charges, resp. notions of quasilocal 'energy--momentum'. In contrast to Noether like quantities, quasilocal energy definitions require some sort of 'asymptotics' to allow an interpretation as a (gauge--independent) observable. Dilaton gravitation, although a little different in detail, shares this property with the other cases. We also present a simple generalization of the absolute conservation law for the case of interactions with matter of any type.Comment: 21 pages, LaTeX-fil

    Indirect Dark Matter Detection from Dwarf Satellites: Joint Expectations from Astrophysics and Supersymmetry

    Get PDF
    We present a general methodology for determining the gamma-ray flux from annihilation of dark matter particles in Milky Way satellite galaxies, focusing on two promising satellites as examples: Segue 1 and Draco. We use the SuperBayeS code to explore the best-fitting regions of the Constrained Minimal Supersymmetric Standard Model (CMSSM) parameter space, and an independent MCMC analysis of the dark matter halo properties of the satellites using published radial velocities. We present a formalism for determining the boost from halo substructure in these galaxies and show that its value depends strongly on the extrapolation of the concentration-mass (c(M)) relation for CDM subhalos down to the minimum possible mass. We show that the preferred region for this minimum halo mass within the CMSSM with neutralino dark matter is ~10^-9-10^-6 solar masses. For the boost model where the observed power-law c(M) relation is extrapolated down to the minimum halo mass we find average boosts of about 20, while the Bullock et al (2001) c(M) model results in boosts of order unity. We estimate that for the power-law c(M) boost model and photon energies greater than a GeV, the Fermi space-telescope has about 20% chance of detecting a dark matter annihilation signal from Draco with signal-to-noise greater than 3 after about 5 years of observation

    Systematics of Leading Particle Production

    Get PDF
    Using a QCD inspired model developed by our group for particle production, the Interacting Gluon Model (IGM), we have made a systematic analysis of all available data on leading particle spectra. These data include diffractive collisions and photoproduction at HERA. With a small number of parameters (essentially only the non-perturbative gluon-gluon cross section and the fraction of diffractive events) good agreement with data is found. We show that the difference between pion and proton leading spectra is due to their different gluon distributions. We predict a universality in the diffractive leading particle spectra in the large momentum region, which turns out to be independent of the incident energy and of the projectile type.Comment: 13 pages, Latex, 4 ps figures. To appear in Phys. Rev.
    • 

    corecore