20 research outputs found

    Genomic architecture of potato resistance to Synchytrium endobioticum disentangled using SSR markers and the 8.3k SolCAP SNP genotyping array

    No full text
    BACKGROUND: The soil borne, obligate biotrophic fungus Synchytrium endobioticum causes tumor-like tissue proliferation (wart) in potato tubers and thereby considerable crop damage. Chemical control is not effective and unfriendly to the environment. S. endobioticum is therefore a quarantined pathogen. The emergence of new pathotypes of the fungus aggravate this agricultural problem. The best control of wart disease is the cultivation of resistant varieties. Phenotypic screening for resistant cultivars is however time, labor and material intensive. Breeding for resistance would therefore greatly benefit from diagnostic DNA markers that can be applied early in the breeding cycle. The prerequisite for the development of diagnostic DNA markers is the genetic dissection of the factors that control resistance to S. endobioticum in various genetic backgrounds of potato. RESULTS: Progeny of a cross between a wart resistant and a susceptible tetraploid breeding clone was evaluated for resistance to S. endobioticum pathotypes 1, 2, 6 and 18 most relevant in Europe. The same progeny was genotyped with 195 microsatellite and 8303 single nucleotide polymorphism (SNP) markers. Linkage analysis identified the multi-allelic locus Sen1/RSe-XIa on potato chromosome XI as major factor for resistance to all four S. endobioticum pathotypes. Six additional, independent modifier loci had smaller effects on wart resistance. Combinations of markers linked to Sen1/RSe-XIa resistance alleles with one to two additional markers were sufficient for obtaining high levels of resistance to S. endobioticum pathotypes 1, 2, 6 and 18 in the analyzed genetic background. CONCLUSIONS: Potato resistance to S. endobioticum is oligogenic with one major and several minor resistance loci. It is composed of multiple alleles for resistance and susceptibility that originate from multiple sources. The genetics of resistance to S. endobioticum varies therefore between different genetic backgrounds. The DNA markers described in this paper are the starting point for pedigree based selection of cultivars with high levels of resistance to S. endobioticum pathotypes 1, 2, 6 and 18. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-015-0195-y) contains supplementary material, which is available to authorized users

    Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.)

    No full text
    KEY MESSAGE: SNPs in candidate genesPain-1,InvCD141(invertases),SSIV(starch synthase),StCDF1(transcription factor),LapN(leucine aminopeptidase), and cytoplasm type are associated with potato tuber yield, starch content and/or starch yield. ABSTRACT: Tuber yield (TY), starch content (TSC), and starch yield (TSY) are complex characters of high importance for the potato crop in general and for industrial starch production in particular. DNA markers associated with superior alleles of genes that control the natural variation of TY, TSC, and TSY could increase precision and speed of breeding new cultivars optimized for potato starch production. Diagnostic DNA markers are identified by association mapping in populations of tetraploid potato varieties and advanced breeding clones. A novel association mapping population of 282 genotypes including varieties, breeding clones and Andean landraces was assembled and field evaluated in Northern Spain for TY, TSC, TSY, tuber number (TN) and tuber weight (TW). The landraces had lower mean values of TY, TW, TN, and TSY. The population was genotyped for 183 microsatellite alleles, 221 single nucleotide polymorphisms (SNPs) in fourteen candidate genes and eight known diagnostic markers for TSC and TSY. Association test statistics including kinship and population structure reproduced five known marker–trait associations of candidate genes and discovered new ones, particularly for tuber yield and starch yield. The inclusion of landraces increased the number of detected marker–trait associations. Integration of the present association mapping results with previous QTL linkage mapping studies for TY, TSC, TSY, TW, TN, and tuberization revealed some hot spots of QTL for these traits in the potato genome. The genomic positions of markers linked or associated with QTL for complex tuber traits suggest high multiplicity and genome wide distribution of the underlying genes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-016-2665-7) contains supplementary material, which is available to authorized users

    Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease

    Get PDF
    The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance to P. infestans from the wild potato species Solanum venturii. The candidate gene approach and GWAS complemented each other as they identified different genes. The results of this study provide new insight in the molecular genetic basis of quantitative resistance in potato and a toolbox of diagnostic SNP markers for breeding applications.</p

    Comparative mapping between potato (Solanum tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome

    No full text
    A genetic map of potato (Solanum tuberosum ) was constructed based on 293 restriction fragment length polymorphism (RFLP) markers including 31 EST markers of Arabidopsis. The in silico comparison of all marker sequences with the Arabidopsis genomic sequence resulted in 189 markers that detected in Arabidopsis 787 loci with sequence conservation. Based on conserved linkage between groups of at least three different markers on the genetic map of potato and the physical map of Arabidopsis , 90 putative syntenic blocks were identified covering 41% of the potato genetic map and 50% of the Arabidopsis physical map. The existence and distribution of syntenic blocks suggested a higher degree of structural conservation in some parts of the potato genome when compared to others. Syntenic blocks were redundant: most potato syntenic blocks were related to several Arabidopsis genome segments and vice versa. Some duplicated potato syntenic blocks correlated well with ancient segmental duplications in Arabidopsis. Syntenic relationships between different genomic segments of potato and the same segment of the Arabidopsis genome indicated that potato genome evolution included ancient intra- and interchromosomal duplications. The partial genome coveridge and the redundancy of syntenic blocks limits the use of synteny for functional comparisons between the crop species potato and the model plant Arabidopsis

    SNPs in Genes Functional in Starch-Sugar Interconversion Associate with Natural Variation of Tuber Starch and Sugar Content of Potato (Solanum tuberosum L.)

    No full text
    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-H(A) allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown

    Cold-sweetening in diploid potato. Mapping QTL and candidate genes

    No full text
    A candidate gene approach has been used as a first step to identify the molecular basis of quantitative trait variation in potato. Sugar content of tubers upon cold storage was the model trait chosen because the metabolic pathways involved in starch and sugar metabolism are well known and many of the genes have been cloned. Tubers of two F1 populations of diploid potato grown in six environments were evaluated for sugar content after cold storage. The populations were genotyped with RFLP, AFLP, and candidate gene markers. QTL analysis revealed that QTL for glucose, fructose, and sucrose content were located on all potato chromosomes. Most QTL for glucose content mapped to the same positions as QTL for fructose content. QTL explaining &gt;10% of the variability for reducing sugars were located on linkage groups I, III, VII, VIII, IX, and XI. QTL consistent across populations and/or environments were identified. QTL were linked to genes encoding invertase, sucrose synthase 3, sucrose phosphate synthase, ADP-glucose pyrophospholase, sucrose transporter 1, and a putative sucrose sensor. The results suggest that allelic variants of enzymes operating in carbohydrate metabolic pathways contribute to the genetic variation in cold sweetening
    corecore