76 research outputs found

    Alzheimer's disease markers in the aged sheep (Ovis aries)

    Get PDF
    This study reports the identification and characterization of markers of Alzheimer's disease (AD) in aged sheep (Ovis aries) as a preliminary step toward making a genetically modified large animal model of AD. Importantly, the sequences of key proteins involved in AD pathogenesis are highly conserved between sheep and human. The processing of the amyloid-β (Aβ) protein is conserved between sheep and human, and sheep Aβ1–42/Aβ1–40 ratios in cerebrospinal fluid (CSF) are also very similar to human. In addition, total tau and neurofilament light levels in CSF are comparable with those found in human. The presence of neurofibrillary tangles in aged sheep brain has previously been established; here, we report for the first time that plaques, the other pathologic hallmark of AD, are also present in the aged sheep brain. In summary, the biological machinery to generate the key neuropathologic features of AD is conserved between the human and sheep, making the sheep a good candidate for future genetic manipulation to accelerate the condition for use in pathophysiological discovery and therapeutic testing

    Evaluation of high-dose daptomycin for therapy of experimental Staphylococcus aureus foreign body infection

    Get PDF
    BACKGROUND: Daptomycin is a novel cyclic lipopeptide whose bactericidal activity is not affected by current antibiotic resistance mechanisms displayed by S. aureus clinical isolates. This study reports the therapeutic activity of high-dose daptomycin compared to standard regimens of oxacillin and vancomycin in a difficult-to-treat, rat tissue cage model of experimental therapy of chronic S. aureus foreign body infection. METHODS: The methicillin-susceptible S. aureus (MSSA) strain I20 is a clinical isolate from catheter-related sepsis. MICs, MBCs, and time-kill curves of each antibiotic were evaluated as recommended by NCCLS, including supplementation with physiological levels (50 mg/L) of Ca(2+ )for daptomycin. Two weeks after local infection of subcutaneously implanted tissue cages with MSSA I20, each animal received (i.p.) twice-daily doses of daptomycin, oxacillin, or vancomycin for 7 days, or was left untreated. The reductions of CFU counts in each treatment group were analysed by ANOVA and Newman-Keuls multiple comparisons procedures. RESULTS: The MICs and MBCs of daptomycin, oxacillin, or vancomycin for MSSA strain I20 were 0.5 and 1, 0.5 and 1, or 1 and 2 mg/L, respectively. In vitro elimination of strain I20 was more rapid with 8 mg/L of daptomycin compared to oxacillin or vancomycin. Twice-daily administered daptomycin (30 mg/kg), oxacillin (200 mg/kg), or vancomycin (50 mg/kg vancomycin) yielded bactericidal antibiotic levels in infected cage fluids throughout therapy. Before therapy, mean (± SEM) viable counts of strain I20 were 6.68 ± 0.10 log(10 )CFU/mL of cage fluid (n = 74). After 7 days of therapy, the mean (± SEM) reduction in viable counts of MSSA I20 was 2.62 (± 0.30) log(10 )CFU/mL in cages (n = 18) of daptomycin-treated rats, exceeding by >2-fold (P < 0.01) the viable count reductions of 0.92 (± 0.23; n = 19) and 0.96 (± 0.24; n = 18) log(10 )CFU/mL in cages of oxacillin-treated and vancomycin-treated rats, respectively. Viable counts in cage fluids of untreated animals increased by 0.48 (± 0.24; n = 19) log(10 )CFU/mL. CONCLUSION: The improved efficacy of the twice-daily regimen of daptomycin (30 mg/kg) compared to oxacillin (200 mg/kg) or vancomycin (50 mg/kg) may result from optimisation of its pharmacokinetic and bactericidal properties in infected cage fluids

    Distribution of GABAergic Interneurons and Dopaminergic Cells in the Functional Territories of the Human Striatum

    Get PDF
    BACKGROUND: The afferent projections of the striatum (caudate nucleus and putamen) are segregated in three territories: associative, sensorimotor and limbic. Striatal interneurons are in part responsible for the integration of these different types of information. Among them, GABAergic interneurons are the most abundant, and can be sorted in three populations according to their content in the calcium binding proteins calretinin (CR), parvalbumin (PV) and calbindin (CB). Conversely, striatal dopaminergic cells (whose role as interneurons is still unclear) are scarce. This study aims to analyze the interneuron distribution in the striatal functional territories, as well as their organization regarding to the striosomal compartment. METHODOLOGY/PRINCIPAL FINDINGS: We used immunohistochemical methods to visualize CR, PV, CB and tyrosine hydroxylase (TH) positive striatal neurons. The interneuronal distribution was assessed by stereological methods applied to every striatal functional territory. Considering the four cell groups altogether, their density was higher in the associative (2120±91 cells/mm(3)) than in the sensorimotor (959±47 cells/mm(3)) or limbic (633±119 cells/mm(3)) territories. CB- and TH-immunoreactive(-ir) cells were distributed rather homogeneously in the three striatal territories. However, the density of CR and PV interneurons were more abundant in the associative and sensorimotor striatum, respectively. Regarding to their compartmental organization, CR-ir interneurons were frequently found in the border between compartments in the associative and sensorimotor territories, and CB-ir interneurons abounded at the striosome/matrix border in the sensorimotor domain. CONCLUSIONS/SIGNIFICANCE: The present study demonstrates that the architecture of the human striatum in terms of its interneuron composition varies in its three functional territories. Furthermore, our data highlight the importance of CR-ir striatal interneurons in the integration of associative information, and the selective role of PV-ir interneurons in the motor territory. On the other hand, the low density of dopaminergic cells casts doubts about their role in the normal human striatum

    Cholinergic Interneurons Are Differentially Distributed in the Human Striatum

    Get PDF
    BACKGROUND: The striatum (caudate nucleus, CN, and putamen, Put) is a group of subcortical nuclei involved in planning and executing voluntary movements as well as in cognitive processes. Its neuronal composition includes projection neurons, which connect the striatum with other structures, and interneurons, whose main roles are maintaining the striatal organization and the regulation of the projection neurons. The unique electrophysiological and functional properties of the cholinergic interneurons give them a crucial modulating function on the overall striatal response. METHODOLOGY/PRINCIPLE FINDINGS: This study was carried out using stereological methods to examine the volume and density (cells/mm(3)) of these interneurons, as visualized by choline acetyltransferase (ChAT) immunoreactivity, in the following territories of the CN and Put of nine normal human brains: 1) precommissural head; 2) postcommissural head; 3) body; 4) gyrus and 5) tail of the CN; 6) precommissural and 7) postcommissural Put. The distribution of ChAT interneurons was analyzed with respect to the topographical, functional and chemical territories of the dorsal striatum. The CN was more densely populated by cholinergic neurons than the Put, and their density increased along the anteroposterior axis of the striatum with the CN body having the highest neuronal density. The associative territory of the dorsal striatum was by far the most densely populated. The striosomes of the CN precommissural head and the postcommissural Put contained the greatest number of ChAT-ir interneurons. The intrastriosomal ChAT-ir neurons were abundant on the periphery of the striosomes throughout the striatum. CONCLUSIONS/SIGNIFICANCE: All these data reveal that cholinergic interneurons are differentially distributed in the distinct topographical and functional territories of the human dorsal striatum, as well as in its chemical compartments. This heterogeneity may indicate that the posterior aspects of the CN require a special integration of information by interneurons. Interestingly, these striatal regions have been very much left out in functional studies

    iTRAQ Analysis of Complex Proteome Alterations in 3xTgAD Alzheimer's Mice: Understanding the Interface between Physiology and Disease

    Get PDF
    Alzheimer's disease (AD) is characterized by progressive cognitive impairment associated with accumulation of amyloid β-peptide, synaptic degeneration and the death of neurons in the hippocampus, and temporal, parietal and frontal lobes of the cerebral cortex. Analysis of postmortem brain tissue from AD patients can provide information on molecular alterations present at the end of the disease process, but cannot discriminate between changes that are specifically involved in AD versus those that are simply a consequence of neuronal degeneration. Animal models of AD provide the opportunity to elucidate the molecular changes that occur in brain cells as the disease process is initiated and progresses. To this end, we used the 3xTgAD mouse model of AD to gain insight into the complex alterations in proteins that occur in the hippocampus and cortex in AD. The 3xTgAD mice express mutant presenilin-1, amyloid precursor protein and tau, and exhibit AD-like amyloid and tau pathology in the hippocampus and cortex, and associated cognitive impairment. Using the iTRAQ stable-isotope-based quantitative proteomic technique, we performed an in-depth proteomic analysis of hippocampal and cortical tissue from 16 month old 3xTgAD and non-transgenic control mice. We found that the most important groups of significantly altered proteins included those involved in synaptic plasticity, neurite outgrowth and microtubule dynamics. Our findings have elucidated some of the complex proteome changes that occur in a mouse model of AD, which could potentially illuminate novel therapeutic avenues for the treatment of AD and other neurodegenerative disorders

    Altered gene expression and DNA damage in peripheral blood cells from Friedreich's ataxia patients: Cellular model of pathology

    Get PDF
    The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases

    Calcium homeostasis in ageing: studies on the calcium binding protein calbindin D-28K

    No full text
    Calbindin D-28K is a neuronal calcium binding protein which may act as a buffer of neuronal calcium. Evidence suggests that disturbance of calcium homeostasis is important in neurodegeneration, possibly via changes in calbindin D-28K. Immunoreactivity of calbindin D-28K is compared in Alzheimer's disease and age-matched controls. The size and number of calbindin D-28K positive neurons in Alzheimer's disease tissue is reduced. There is also shrinkage of the dendritic tree. Continuing work examines the function of calbindin D-28K using transgenic mice
    • …
    corecore