49 research outputs found

    Electronic Health Record Functionality Needed to Better Support Primary Care

    Get PDF
    Electronic health records (EHRs) must support primary care clinicians and patients, yet many clinicians remain dissatisfied with their system. This manuscript presents a consensus statement about gaps in current EHR functionality and needed enhancements to support primary care. The Institute of Medicine primary care attributes were used to define needs and Meaningful Use (MU) objectives to define EHR functionality. Current objectives remain disease- rather than whole-person focused, ignoring factors like personal risks, behaviors, family structure, and occupational and environmental influences. Primary care needs EHRs to move beyond documentation to interpreting and tracking information over time as well as patient partnering activities, support for team based care, population management tools that deliver care, and reduced documentation burden. While Stage 3 MU’s focus on outcomes is laudable, enhanced functionality is still needed including EHR modifications, expanded use of patient portals, seamless integration with external applications, and advancement of national infrastructure and policies

    Heavy Ion Carcinogenesis and Human Space Exploration

    Get PDF
    Prior to the human exploration of Mars or long duration stays on the Earth s moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been show to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, while obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets

    Complex associations between cross‐kingdom microbial endophytes and host genotype in ash dieback disease dynamics

    Get PDF
    Tree pathogens are a major threat to forest ecosystems. Conservation management strategies can exploit natural mechanisms of resistance, such as tree genotype and host‐associated microbial communities. However, fungal and bacterial communities are rarely looked at in the same framework, particularly in conjunction with host genotype. Here, we explore these relationships and their influence on ash dieback disease, caused by the pathogen Hymenoscyphus fraxineus, in European common ash trees. We collected leaves from UK ash trees and used microsatellite markers to genotype trees, qPCR to quantify H. fraxineus infection load, and ITS and 16S rRNA amplicon sequencing to identify fungal and bacterial communities, respectively. There was a significant association between H. fraxineus infection intensity and ash leaf fungal and bacterial community composition. Higher infection levels were positively correlated with fungal community alpha diversity, and a number of fungal and bacterial genera were significantly associated with infection presence and intensity. Under higher infection loads, leaf microbial networks were characterised by stronger associations between fewer members than those associated with lower infection levels. Together these results suggest that H. fraxineus disrupts stable endophyte communities after a particular infection threshold is reached, and may enable proliferation of opportunistic microbes. We identified three microbial genera associated with an absence of infection, potentially indicating an antagonistic relationship with H. fraxineus that could be utilised in the development of anti‐pathogen treatments. Host genotype did not directly affect infection, but did significantly affect leaf fungal community composition. Thus, host genotype could have the potential to indirectly affect disease susceptibility through genotype x microbiome interactions, and should be considered when selectively breeding trees. Synthesis. We show the diversity, composition and network structure of ash leaf microbial communities are associated with the severity of infection from ash dieback disease, with evidence of disease‐induced dysbiosis. We also show that host genotype influences leaf fungal community composition, but does not directly influence tree infection. These findings help to elucidate relationships between host genetics, the microbiome, and a tree pathogen, highlighting potential resistance mechanisms and possible co‐infection concerns that could inform ash tree manage ment
    corecore