827 research outputs found

    Agonist-induced alteration in the membrane form of muscarinic cholinergic receptors

    Get PDF
    Incubation of 1321N1 human astrocytoma cells with carbachol resulted in a rapid loss of binding of [3H]N-methylscopolamine ([3H]NMS) to muscarinic cholinergic receptors measured at 4 degrees C on intact cells; loss of muscarinic receptors in lysates from the same cells measured with [3H]quinuclidinyl benzilate [( 3H]QNB) at 37 degrees C occurred at a slower rate. Upon removal of agonist from the medium, the lost [3H]NMS binding sites measured on intact cells recovered with a t1/2 of approximately 20 min, but only to the level to which [3H]QNB binding sites had been lost; no recovery of "lost" [3H]QNB binding sites occurred over the same period. Based on these data and the arguments of Galper et al. (Galper, J. B., Dziekan, L. C., O'Hara, D. S., and Smith, T. W. (1982) J. Biol. Chem. 257, 10344-10356) regarding the relative hydrophilicity of [3H]NMS versus [3H]QNB, it is proposed that carbachol induces a rapid sequestration of muscarinic receptors that is followed by a loss of these receptors from the cell. These carbachol-induced changes are accompanied by a change in the membrane form of the muscarinic receptor. Although essentially all of the muscarinic receptors from control cells co-purified with the plasma membrane fraction on sucrose density gradients, 20-35% of the muscarinic receptors from cells treated for 30 min with 100 microM carbachol migrated to a much lower sucrose density. This conversion of muscarinic receptors to a "light vesicle" form occurred with a t1/2 approximately 10 min, and reversed with a t1/2 approximately 20 min. In contrast to previous results in this cell line regarding beta-adrenergic receptors (Harden, T. K., Cotton, C. U., Waldo, G. L., Lutton, J. K., and Perkins, J. P. (1980) Science 210, 441-443), agonist binding to muscarinic receptors in the light vesicle fraction obtained from carbachol-treated cells was still regulated by GTP. One interpretation of these data is that agonists induce an internalization of muscarinic receptors with the retention of their functional interaction with a guanine nucleotide regulatory protein

    Urinary Epidermal Growth Factor as a Marker of Disease Progression in Children With Nephrotic Syndrome

    Get PDF
    © 2019 International Society of Nephrology Introduction: Childhood-onset nephrotic syndrome has a variable clinical course. Improved predictive markers of long-term outcomes in children with nephrotic syndrome are needed. This study tests the association between baseline urinary epidermal growth factor (uEGF) excretion and longitudinal kidney function in children with nephrotic syndrome. Methods: The study evaluated 191 participants younger than 18 years enrolled in the Nephrotic Syndrome Study Network, including 118 with their first clinically indicated kidney biopsy (68 minimal change disease; 50 focal seNorthwell Healthntal glomerulosclerosis) and 73 with incident nephrotic syndrome without a biopsy. uEGF was measured at baseline for all participants and normalized by the urine creatinine (Cr) concentration. Renal epidermal growth factor (EGF) mRNA was measured in the tubular compartment microdissected from kidney biopsy cores from a subset of patients. Linear mixed models were used to test if baseline uEGF/Cr and EGF mRNA expression were associated with change in estimated glomerular filtration rate (eGFR) over time. Results: Higher uEGF/Cr at baseline was associated with slower eGFR decline during follow-up (median follow-up = 30 months). Halving of uEGF/Cr was associated with a decrease in eGFR slope of 2.0 ml/min per 1.73 m2 per year (P \u3c 0.001) adjusted for age, race, diagnosis, baseline eGFR and proteinuria, and APOL1 genotype. In the biopsied subgroup, uEGF/Cr was correlated with EGF mRNA expression (r = 0.74; P \u3c 0.001), but uEGF/Cr was retained over mRNA expression as the stronger predictor of eGFR slope after multivariable adjustment (decrease in eGFR slope of 1.7 ml/min per 1.73 m2 per year per log2 decrease in uEGF/Cr; P \u3c 0.001). Conclusion: uEGF/Cr may be a useful noninvasive biomarker that can assist in predicting the long-term course of kidney function in children with incident nephrotic syndrome

    Identification of G α 11 as the phospholipase C-activating G-protein of turkey erythrocytes

    Get PDF
    A 43 kDa phospholipase C-activating protein has been purified previously from turkey erythrocytes and shown to express immunological properties expected of that of the Gq family of G-protein alpha-subunits [Waldo, Boyer, Morris and Harden (1991) J. Biol. Chem. 266, 14217-14225]. Internal amino acid sequence has now been obtained from this protein which shares 50-100% sequence identity with sequences encoded by mammalian G alpha 11 and G alpha q cDNAs. To identify the purified protein unambiguously, it was necessary to compare its amino acid sequence with the sequence encoded by avian G-protein alpha-subunit cDNA. As such, mouse G alpha q was used as a probe to screen turkey brain and fetal-turkey blood cDNA libraries. A full-length cDNA was identified that encodes avian G alpha 11, on the basis of its 96-98% amino acid identity with mammalian G alpha 11. All eight peptides sequenced from the turkey erythrocyte phospholipase C-activating protein are completely contained within the deduced amino acid sequence of the avian G alpha 11 cDNA. Expression of this cDNA in Sf9 cells by using a baculovirus expression system resulted in the production of a 43 kDa protein that reacts strongly with antisera to the Gq family of G-protein alpha-subunits and activated purified avian phospholipase C in an AlF4(-)-dependent manner. Taken together, these results unambiguously identify the protein purified from turkey erythrocytes, on the basis of its capacity to activate avian phospholipase C, as G alpha 11

    Excess Imidacloprid Exposure Causes the Heart Tube Malformation of Chick Embryos

    Get PDF
    As a neonicotinoid pesticide, imidacloprid is widely used to control sucking insects on agricultural planting and fleas on domestic animals. However, the extent to which imidacloprid exposure has an influence on cardiogensis in early embryogenesis is still poorly understood. In vertebrates, the heart is the first organ to be formed. In this study to address whether or not imidacloprid exposure affects early heart development, the early chick embryo has been used as an experimental model because of the accessibility of chick embryo at its early developmental stage. The results demonstrate that exposure of the early chick embryo to imidacloprid caused malformation of heart tube. Furthermore,the data reveal that down-regulation of GATA4, Nkx2.5 and BMP4 and up-regulation of Wnt3a led to aberrant cardiomyocyte differentiation. In addition, imidacloprid exposure interfered with basement membrane (BM) breakdown, E-cadherin/Laminin expression and mesoderm formation during the epithelial-mesenchymal transition (EMT) in gastrula chick embryos. Finally, the DiI-labeled cell migration trajectory indicated that imidacloprid restricted the cell migration of cardiac progenitors to primary heart field in gastrula chick embryos. A similar observation was also obtained from the cell migration assay of scratch wounds in vitro. Additionally, imidacloprid exposure negatively affected the cytoskeleton structure and expression of corresponding adhesion molecules. Taken together, these results reveal that the improper EMT, cardiac progenitor migration and differentiation are responsible for imidacloprid exposure-induced malformation of heart tube during chick embryo development

    Kinetic Scaffolding Mediated by a Phospholipase C-  and Gq Signaling Complex

    Get PDF
    Transmembrane signals initiated by a broad range of extracellular stimuli converge on nodes that regulate phospholipase C (PLC)–dependent inositol lipid hydrolysis for signal propagation. We describe how heterotrimeric guanine nucleotide–binding proteins (G proteins) activate PLC-βs and in turn are deactivated by these downstream effectors. The 2.7-angstrom structure of PLC-β3 bound to activated Gαq reveals a conserved module found within PLC-βs and other effectors optimized for rapid engagement of activated G proteins. The active site of PLC-β3 in the complex is occluded by an intramolecular plug that is likely removed upon G protein–dependent anchoring and orientation of the lipase at membrane surfaces. A second domain of PLC-β3 subsequently accelerates guanosine triphosphate hydrolysis by Gαq, causing the complex to dissociate and terminate signal propagation. Mutations within this domain dramatically delay signal termination in vitro and in vivo. Consequently, this work suggests a dynamic catch-and-release mechanism used to sharpen spatiotemporal signals mediated by diverse sensory inputs

    New Molecular Reporters for Rapid Protein Folding Assays

    Get PDF
    The GFP folding reporter assay [1] uses a C-terminal GFP fusion to report on the folding success of upstream fused polypeptides. The GFP folding assay is widely-used for screening protein variants with improved folding and solubility [2]–[8], but truncation artifacts may arise during evolution, i.e. from de novo internal ribosome entry sites [9]. One way to reduce such artifacts would be to insert target genes within the scaffolding of GFP circular permuted variants. Circular permutants of fluorescent proteins often misfold and are non-fluorescent, and do not readily tolerate fused polypeptides within the fluorescent protein scaffolding [10]–[12]. To overcome these limitations, and to increase the dynamic range for reporting on protein misfolding, we have created eight GFP insertion reporters with different sensitivities to protein misfolding using chimeras of two previously described GFP variants, the GFP folding reporter [1] and the robustly-folding “superfolder” GFP [13]. We applied this technology to engineer soluble variants of Rv0113, a protein from Mycobacterium tuberculosis initially expressed as inclusion bodies in Escherichia coli. Using GFP insertion reporters with increasing stringency for each cycle of mutagenesis and selection led to a variant that produced large amounts of soluble protein at 37°C in Escherichia coli. The new reporter constructs discriminate against truncation artifacts previously isolated during directed evolution of Rv0113 using the original C-terminal GFP folding reporter. Using GFP insertion reporters with variable stringency should prove useful for engineering protein variants with improved folding and solubility, while reducing the number of artifacts arising from internal cryptic ribosome initiation sites

    A preliminary assessment of the effects of ATI-2042 in subjects with paroxysmal atrial fibrillation using implanted pacemaker methodology

    Get PDF
    Aims ATI-2042 (budiodarone) is a chemical analogue of amiodarone with a half life of 7 h. It is electrophysiologically similar to amiodarone, but may not have metabolic and interaction side effects. The sophisticated electrocardiograph logs of advanced DDDRP pacemakers were used to monitor the efficacy of ATI-2042. The aim of this study was to determine the preliminary efficacy and safety of ATI-2042 in patients with paroxsymal atrial fibrillation (PAF) and pacemakers. Methods and results Six women with AF burden (AFB) between 1 and 50% underwent six sequential 2-week study periods. Patients received 200 mg bid of ATI-2042 during Period 2 (p2), 400 mg bid during p3, 600 mg bid during p4, 800 mg bid during p5, and no drug during baseline and washout (p1 and p6). Pacemaker data for the primary outcome measure AFB were downloaded during each period. Mean AFB decreased between baseline and all doses: AFB at baseline (SD) was 20.3 ± 14.6% and mean AFB at 200 mg bid was 5.2 ± 4.2%, at 400 mg bid 5.2 ± 5.2%, at 600 mg bid 2.8 ± 3.4%, and at 800 mg bid 1.5 ± 0.5%. The mean reductions in AFB at all doses of ATI-2042 were statistically significant (P < 0.005). Atrial fibrillation burden increased in washout. Atrial fibrillation episodes tended to increase with ATI-2042, but this was offset by substantial decreases in episode duration. ATI-2042 was generally well tolerated. Conclusion ATI-2042 effectively reduced AFB over all doses studied by reducing mean episode duration. A large-scale study will be required to confirm this effect

    Clinical preventability of 30-day readmission after percutaneous coronary intervention

    Get PDF
    Early readmission after PCI is an important contributor to healthcare expenditures and a target for performance measurement. The extent to which 30-day readmissions after PCI are preventable is unknown yet essential to minimizing their occurrence.PCI patients readmitted to hospital at which PCI was performed within 30 days of discharge at the Massachusetts General Hospital and Brigham and Women's Hospital were identified, and their medical records were independently reviewed by 2 physicians. Each reviewer used an ordinal scale (0, not; 1, possibly; 2, probably; and 3, definitely preventable) to rate clinical preventability, and a total sum score ≥2 was considered preventable. Characteristics of preventable and unpreventable readmissions were compared, and predictors of clinical preventability were assessed by using multivariate logistic regression. Of 9288 PCIs performed, 9081 (97.8%) patients survived to initial hospital discharge and 1007 (11.1%) were readmitted to the index hospital within 30 days. After excluding repeat readmissions, 893 readmissions were reviewed. Fair agreement between physician reviewers was observed (weighted κ statistic 0.44 [95% CI 0.39 to 0.49]). After aggregation of scores, 380 (42.6%) readmissions were deemed preventable and 513 (57.4%) were deemed not preventable. Common causes of preventable readmissions included staged PCI without new symptoms (14.7%), vascular/bleeding complications of PCI (10.0%), and congestive heart failure (9.7%).Nearly half of 30-day readmissions after PCI may have been prevented by changes in clinical decision-making. Focusing on these readmissions may reduce readmission rates.Jason H. Wasfy, Jordan B. Strom, Stephen W. Waldo, Cashel O'Brien, Neil J. Wimmer ... John A. Spertus ... et al
    • …
    corecore