235 research outputs found

    The utilisation of health research in policy-making: Concepts, examples and methods of assessment

    Get PDF
    The importance of health research utilisation in policy-making, and of understanding the mechanisms involved, is increasingly recognised. Recent reports calling for more resources to improve health in developing countries, and global pressures for accountability, draw greater attention to research-informed policy-making. Key utilisation issues have been described for at least twenty years, but the growing focus on health research systems creates additional dimensions. The utilisation of health research in policy-making should contribute to policies that may eventually lead to desired outcomes, including health gains. In this article, exploration of these issues is combined with a review of various forms of policy-making. When this is linked to analysis of different types of health research, it assists in building a comprehensive account of the diverse meanings of research utilisation. Previous studies report methods and conceptual frameworks that have been applied, if with varying degrees of success, to record utilisation in policy-making. These studies reveal various examples of research impact within a general picture of underutilisation. Factors potentially enhancing utilisation can be identified by exploration of: priority setting; activities of the health research system at the interface between research and policy-making; and the role of the recipients, or 'receptors', of health research. An interfaces and receptors model provides a framework for analysis. Recommendations about possible methods for assessing health research utilisation follow identification of the purposes of such assessments. Our conclusion is that research utilisation can be better understood, and enhanced, by developing assessment methods informed by conceptual analysis and review of previous studies

    Aconitase B Is Required for Optimal Growth of Xanthomonas campestris pv. vesicatoria in Pepper Plants

    Get PDF
    The aerobic plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) colonizes the intercellular spaces of pepper and tomato. One enzyme that might contribute to the successful proliferation of Xcv in the host is the iron-sulfur protein aconitase, which catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid (TCA) cycle and might also sense reactive oxygen species (ROS) and changes in cellular iron levels. Xcv contains three putative aconitases, two of which, acnA and acnB, are encoded by a single chromosomal locus. The focus of this study is aconitase B (AcnB). acnB is co-transcribed with two genes, XCV1925 and XCV1926, encoding putative nucleic acid-binding proteins. In vitro growth of acnB mutants was like wild type, whereas in planta growth and symptom formation in pepper plants were impaired. While acnA, XCV1925 or XCV1926 mutants showed a wild-type phenotype with respect to bacterial growth and in planta symptom formation, proliferation of the acnB mutant in susceptible pepper plants was significantly impaired. Furthermore, the deletion of acnB led to reduced HR induction in resistant pepper plants and an increased susceptibility to the superoxide-generating compound menadione. As AcnB complemented the growth deficiency of an Escherichia coli aconitase mutant, it is likely to be an active aconitase. We therefore propose that optimal growth and survival of Xcv in pepper plants depends on AcnB, which might be required for the utilization of citrate as carbon source and could also help protect the bacterium against oxidative stress

    Diverse and Active Roles for Adipocytes During Mammary Gland Growth and Function

    Get PDF
    The mammary gland is unique in its requirement to develop in close association with a depot of adipose tissue that is commonly referred to as the mammary fat pad. As discussed throughout this issue, the mammary fat pad represents a complex stromal microenvironment that includes a variety of cell types. In this article we focus on adipocytes as local regulators of epithelial cell growth and their function during lactation. Several important considerations arise from such a discussion. There is a clear and close interrelationship between different stromal tissue types within the mammary fat pad and its adipocytes. Furthermore, these relationships are both stage- and species-dependent, although many questions remain unanswered regarding their roles in these different states. Several lines of evidence also suggest that adipocytes within the mammary fat pad may function differently from those in other fat depots. Finally, past and future technologies present a variety of opportunities to model these complexities in order to more precisely delineate the many potential functions of adipocytes within the mammary glands. A thorough understanding of the role for this cell type in the mammary glands could present numerous opportunities to modify both breast cancer risk and lactation performance

    RBR ligase–mediated ubiquitin transfer: a tale with many twists and turns

    Get PDF
    RBR ligases are an enigmatic class of E3 ubiquitin ligases that combine properties of RING and HECT-type E3s and undergo multilevel regulation through autoinhibition, post-translational modifications, multimerization and interaction with binding partners. Here, we summarize recent progress in RBR structures and function, which has uncovered commonalities in the mechanisms by which different family members transfer ubiquitin through a multistep process. However, these studies have also highlighted clear differences in the activity of different family members, suggesting that each RBR ligase has evolved specific properties to fit the biological process it regulates

    Molecular networks of human muscle adaptation to exercise and age

    Get PDF
    Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44) who then undertook 20 weeks of supervised resistance-exercise training (RET). Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%), and when applying Ingenuity Pathway Analysis (IPA) up-stream analysis to ~580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR) signaling associating with growth (P = 1.4×10−30). Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6×10−13) and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = −2.3; P = 3×10−7)) with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET), they appear to represent “generic” physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52), with a continuum of subject ages (18–78 y), the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ~500 genes highly enriched in post-transcriptional processes (P = 1×10−6) and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to the muscle age-related genes. Finally, a number of specific chromosomal loci, including 1q12 and 13q21, contributed by more than chance to the age-related gene list (P = 0.01–0.005), implying possible epigenetic events. We conclude that human muscle age-related molecular processes appear distinct from the processes regulated by those of physical activity

    Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes

    Get PDF
    Abstract Background Upstream open reading frames (uORFs) can mediate translational control over the largest, or major ORF (mORF) in response to starvation, polyamine concentrations, and sucrose concentrations. One plant uORF with conserved peptide sequences has been shown to exert this control in an amino acid sequence-dependent manner but generally it is not clear what kinds of genes are regulated, or how extensively this mechanism is invoked in a given genome. Results By comparing full-length cDNA sequences from Arabidopsis and rice we identified 26 distinct homology groups of conserved peptide uORFs, only three of which have been reported previously. Pairwise Ka/Ks analysis showed that purifying selection had acted on nearly all conserved peptide uORFs and their associated mORFs. Functions of predicted mORF proteins could be inferred for 16 homology groups and many of these proteins appear to have a regulatory function, including 6 transcription factors, 5 signal transduction factors, 3 developmental signal molecules, a homolog of translation initiation factor eIF5, and a RING finger protein. Transcription factors are clearly overrepresented in this data set when compared to the frequency calculated for the entire genome (p = 1.2 × 10-7). Duplicate gene pairs arising from a whole genome duplication (ohnologs) with a conserved uORF are much more likely to have been retained in Arabidopsis (Arabidopsis thaliana) than are ohnologs of other genes (39% vs 14% of ancestral genes, p = 5 × 10-3). Two uORF groups were found in animals, indicating an ancient origin of these putative regulatory elements. Conclusion Conservation of uORF amino acid sequence, association with homologous mORFs over long evolutionary time periods, preferential retention after whole genome duplications, and preferential association with mORFs coding for transcription factors suggest that the conserved peptide uORFs identified in this study are strong candidates for translational controllers of regulatory genes.</p

    Transposon activation mutagenesis as a screening tool for identifying resistance to cancer therapeutics

    Get PDF
    Background: The development of resistance to chemotherapies represents a significant barrier to successful cancer treatment. Resistance mechanisms are complex, can involve diverse and often unexpected cellular processes, and can vary with both the underlying genetic lesion and the origin or type of tumor. For these reasons developing experimental strategies that could be used to understand, identify and predict mechanisms of resistance in different malignant cells would be a major advance. Methods: Here we describe a gain-of-function forward genetic approach for identifying mechanisms of resistance. This approach uses a modified piggyBac transposon to generate libraries of mutagenized cells, each containing transposon insertions that randomly activate nearby gene expression. Genes of interest are identified using next-gen high-throughput sequencing and barcode multiplexing is used to reduce experimental cost. Results: Using this approach we successfully identify genes involved in paclitaxel resistance in a variety of cancer cell lines, including the multidrug transporter ABCB1, a previously identified major paclitaxel resistance gene. Analysis of co-occurring transposons integration sites in single cell clone allows for the identification of genes that might act cooperatively to produce drug resistance a level of information not accessible using RNAi or ORF expression screening approaches. Conclusion: We have developed a powerful pipeline to systematically discover drug resistance in mammalian cells in vitro. This cost-effective approach can be readily applied to different cell lines, to identify canonical or context specific resistance mechanisms. Its ability to probe complex genetic context and non-coding genomic elements as well as cooperative resistance events makes it a good complement to RNAi or ORF expression based screens

    EAACI position paper on occupational rhinitis

    Get PDF
    The present document is the result of a consensus reached by a panel of experts from European and non-European countries on Occupational Rhinitis (OR), a disease of emerging relevance which has received little attention in comparison to occupational asthma. The document covers the main items of OR including epidemiology, diagnosis, management, socio-economic impact, preventive strategies and medicolegal issues. An operational definition and classification of OR tailored on that of occupational asthma, as well as a diagnostic algorithm based on steps allowing for different levels of diagnostic evidence are proposed. The needs for future research are pointed out. Key messages are issued for each item

    The Human Phenotype Ontology in 2024: phenotypes around the world

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs
    corecore