209 research outputs found

    The Infant

    Get PDF

    Metabolic control of BRISC–SHMT2 assembly regulates immune signalling

    Get PDF
    Serine hydroxymethyltransferase 2 (SHMT2) regulates one-carbon transfer reactions that are essential for amino acid and nucleotide metabolism, and uses pyridoxal-5′-phosphate (PLP) as a cofactor. Apo SHMT2 exists as a dimer with unknown functions, whereas PLP binding stabilizes the active tetrameric state. SHMT2 also promotes inflammatory cytokine signalling by interacting with the deubiquitylating BRCC36 isopeptidase complex (BRISC), although it is unclear whether this function relates to metabolism. Here we present the cryo-electron microscopy structure of the human BRISC–SHMT2 complex at a resolution of 3.8 Å. BRISC is a U-shaped dimer of four subunits, and SHMT2 sterically blocks the BRCC36 active site and inhibits deubiquitylase activity. Only the inactive SHMT2 dimer—and not the active PLP-bound tetramer—binds and inhibits BRISC. Mutations in BRISC that disrupt SHMT2 binding impair type I interferon signalling in response to inflammatory stimuli. Intracellular levels of PLP regulate the interaction between BRISC and SHMT2, as well as inflammatory cytokine responses. These data reveal a mechanism in which metabolites regulate deubiquitylase activity and inflammatory signalling

    The utilisation of health research in policy-making: Concepts, examples and methods of assessment

    Get PDF
    The importance of health research utilisation in policy-making, and of understanding the mechanisms involved, is increasingly recognised. Recent reports calling for more resources to improve health in developing countries, and global pressures for accountability, draw greater attention to research-informed policy-making. Key utilisation issues have been described for at least twenty years, but the growing focus on health research systems creates additional dimensions. The utilisation of health research in policy-making should contribute to policies that may eventually lead to desired outcomes, including health gains. In this article, exploration of these issues is combined with a review of various forms of policy-making. When this is linked to analysis of different types of health research, it assists in building a comprehensive account of the diverse meanings of research utilisation. Previous studies report methods and conceptual frameworks that have been applied, if with varying degrees of success, to record utilisation in policy-making. These studies reveal various examples of research impact within a general picture of underutilisation. Factors potentially enhancing utilisation can be identified by exploration of: priority setting; activities of the health research system at the interface between research and policy-making; and the role of the recipients, or 'receptors', of health research. An interfaces and receptors model provides a framework for analysis. Recommendations about possible methods for assessing health research utilisation follow identification of the purposes of such assessments. Our conclusion is that research utilisation can be better understood, and enhanced, by developing assessment methods informed by conceptual analysis and review of previous studies

    Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism

    Get PDF
    7-carboxy-7-deazaguanine synthase (QueE) catalyzes a key S-adenosyl-L-methionine (AdoMet)- and Mg[superscript 2+]-dependent radical-mediated ring contraction step, which is common to the biosynthetic pathways of all deazapurine-containing compounds. QueE is a member of the AdoMet radical superfamily, which employs the 5′-deoxyadenosyl radical from reductive cleavage of AdoMet to initiate chemistry. To provide a mechanistic rationale for this elaborate transformation, we present the crystal structure of a QueE along with structures of pre- and post-turnover states. We find that substrate binds perpendicular to the [4Fe-4S]-bound AdoMet, exposing its C6 hydrogen atom for abstraction and generating the binding site for Mg[superscript 2+], which coordinates directly to the substrate. The Burkholderia multivorans structure reported here varies from all other previously characterized members of the AdoMet radical superfamily in that it contains a hypermodified ([β [subscript 6] over α [subscript 3]]) protein core and an expanded cluster-binding motif, CX[subscript 14]CX[subscript 2]C.United States. Dept. of Energy. Office of Biological and Environmental ResearchUnited States. Dept. of Energy. Office of Basic Energy SciencesNational Center for Research Resources (U.S.) (P41RR012408)National Institute of General Medical Sciences (U.S.) (P41GM103473)National Center for Research Resources (U.S.) (5P41RR015301-10)National Institute of General Medical Sciences (U.S.) (8 P41 GM 103403-10)United States. Dept. of Energy (Contract DE-AC02-06CH11357

    Proteome Serological Determination of Tumor-Associated Antigens in Melanoma

    Get PDF
    Proteome serology may complement expression library-based approaches as strategy utilizing the patients' immune responses for the identification pathogenesis factors and potential targets for therapy and markers for diagnosis. Melanoma is a relatively immunogenic tumor and antigens recognized by melanoma-specific T cells have been extensively studied. The specificities of antibody responses to this malignancy have been analyzed to some extent by molecular genetic but not proteomics approaches. We screened sera of 94 melanoma patients for anti-melanoma reactivity and detected seropositivity in two-thirds of the patients with 2–6 antigens per case detected by 1D and an average of 2.3 per case by 2D Western blot analysis. For identification, antigen spots in Western blots were aligned with proteins in 2-DE and analyzed by mass spectrometry. 18 antigens were identified, 17 of which for the first time for melanoma. One of these antigens, galectin-3, has been related to various oncogenic processes including metastasis formation and invasiveness. Similarly, enolase has been found deregulated in different cancers. With at least 2 of 18 identified proteins implicated in oncogenic processes, the work confirms the potential of proteome-based antigen discovery to identify pathologically relevant proteins

    Low back pain status in elite and semi-elite Australian football codes: a cross-sectional survey of football (soccer), Australian rules, rugby league, rugby union and non-athletic controls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our understanding of the effects of football code participation on low back pain (LBP) is limited. It is unclear whether LBP is more prevalent in athletic populations or differs between levels of competition. Thus it was the aim of this study to document and compare the prevalence, intensity, quality and frequency of LBP between elite and semi-elite male Australian football code participants and a non-athletic group.</p> <p>Methods</p> <p>A cross-sectional survey of elite and semi-elite male Australian football code participants and a non-athletic group was performed. Participants completed a self-reported questionnaire incorporating the Quadruple Visual Analogue Scale (QVAS) and McGill Pain Questionnaire (short form) (MPQ-SF), along with additional questions adapted from an Australian epidemiological study. Respondents were 271 elite players (mean age 23.3, range 17–39), 360 semi-elite players (mean age 23.8, range 16–46) and 148 non-athletic controls (mean age 23.9, range 18–39).</p> <p>Results</p> <p>Groups were matched for age (p = 0.42) and experienced the same age of first onset LBP (p = 0.40). A significant linear increase in LBP from the non-athletic group, to the semi-elite and elite groups for the QVAS and the MPQ-SF was evident (p < 0.001). Elite subjects were more likely to experience more frequent (daily or weekly OR 1.77, 95% CI 1.29–2.42) and severe LBP (discomforting and greater OR 1.75, 95% CI 1.29–2.38).</p> <p>Conclusion</p> <p>Foolers in Australia have significantly more severe and frequent LBP than a non-athletic group and this escalates with level of competition.</p

    Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles

    Get PDF
    Inorganic nanoparticles provide promising tools for biomedical applications including detection, diagnosis and therapy. While surface properties such as charge are expected to play an important role in their in vivo behavior, very little is known how the surface chemistry of nanoparticles influences their pharmacokinetics, tumor uptake, and biodistribution.Using a family of structurally homologous nanoparticles we have investigated how pharmacological properties including tumor uptake and biodistribution are influenced by surface charge using neutral (TEGOH), zwitterionic (Tzwit), negative (TCOOH) and positive (TTMA) nanoparticles. Nanoparticles were injected into mice (normal and athymic) either in the tail vein or into the peritoneum.Neutral and zwitterionic nanoparticles demonstrated longer circulation time via both i.p. and i.v. administration, whereas negatively and positively charged nanoparticles possessed relatively short half-lives. These pharmacological characteristics were reflected on the tumor uptake and biodistribution of the respective nanoparticles, with enhanced tumor uptake by neutral and zwitterionic nanoparticles via passive targeting

    Differential Expression of MicroRNAs in Adipose Tissue after Long-Term High-Fat Diet-Induced Obesity in Mice

    Get PDF
    Obesity is a major health concern worldwide which is associated with increased risk of chronic diseases such as metabolic syndrome, cardiovascular disease and cancer. The elucidation of the molecular mechanisms involved in adipogenesis and obesogenesis is of essential importance as it could lead to the identification of novel biomarkers and therapeutic targets for the development of anti-obesity drugs. MicroRNAs (miRNAs) have been shown to play regulatory roles in several biological processes. They have become a growing research field and consist of promising pharmaceutical targets in various fields such as cancer, metabolism, etc. The present study investigated the possible implication of miRNAs in adipose tissue during the development of obesity using as a model the C57BLJ6 mice fed a high-fat diet

    Iminosugar-Based Inhibitors of Glucosylceramide Synthase Increase Brain Glycosphingolipids and Survival in a Mouse Model of Sandhoff Disease

    Get PDF
    The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects
    • …
    corecore