68 research outputs found

    Non-vanishing Magnetic Flux through the Slightly-charged Kerr Black Hole

    Full text link
    In association with the Blanford-Znajek mechanism for rotational energy extraction from Kerr black holes, it is of some interest to explore how much of magnetic flux can actually penetrate the horizon at least in idealized situations. For completely uncharged Kerr hole case, it has been known for some time that the magnetic flux gets entirely expelled when the hole is maximally-rotating. In the mean time, it is known that when the rotating hole is immersed in an originally uniform magnetic field surrounded by an ionized interstellar medium (plasma), which is a more realistic situation, the hole accretes certain amount of electric charge. In the present work, it is demonstrated that as a result of this accretion charge small enough not to disturb the geometry, the magnetic flux through this slightly charged Kerr hole depends not only on the hole's angular momentum but on the hole's charge as well such that it never vanishes for any value of the hole's angular momentum.Comment: 33pages, 1 figure, Revtex, some comments added, typos correcte

    Intersecting 6-branes from new 7-manifolds with G_2 holonomy

    Full text link
    We discuss a new family of metrics of 7-manifolds with G_2 holonomy, which are R^3 bundles over a quaternionic space. The metrics depend on five parameters and have two Abelian isometries. Certain singularities of the G_2 manifolds are related to fixed points of these isometries; there are two combinations of Killing vectors that possess co-dimension four fixed points which yield upon compactification only intersecting D6-branes if one also identifies two parameters. Two of the remaining parameters are quantized and we argue that they are related to the number of D6-branes, which appear in three stacks. We perform explicitly the reduction to the type IIA model.Comment: 25 pages, 1 figure, Latex, small changes and add refs, version appeared in JHE

    A Gravitational Aharonov-Bohm Effect, and its Connection to Parametric Oscillators and Gravitational Radiation

    Full text link
    A thought experiment is proposed to demonstrate the existence of a gravitational, vector Aharonov-Bohm effect. A connection is made between the gravitational, vector Aharonov-Bohm effect and the principle of local gauge invariance for nonrelativistic quantum matter interacting with weak gravitational fields. The compensating vector fields that are necessitated by this local gauge principle are shown to be incorporated by the DeWitt minimal coupling rule. The nonrelativistic Hamiltonian for weak, time-independent fields interacting with quantum matter is then extended to time-dependent fields, and applied to problem of the interaction of radiation with macroscopically coherent quantum systems, including the problem of gravitational radiation interacting with superconductors. But first we examine the interaction of EM radiation with superconductors in a parametric oscillator consisting of a superconducting wire placed at the center of a high Q superconducting cavity driven by pump microwaves. We find that the threshold for parametric oscillation for EM microwave generation is much lower for the separated configuration than the unseparated one, which then leads to an observable dynamical Casimir effect. We speculate that a separated parametric oscillator for generating coherent GR microwaves could also be built.Comment: 25 pages, 5 figures, YA80 conference (Chapman University, 2012

    Optimal estimation of qubit states with continuous time measurements

    Get PDF
    We propose an adaptive, two steps strategy, for the estimation of mixed qubit states. We show that the strategy is optimal in a local minimax sense for the trace norm distance as well as other locally quadratic figures of merit. Local minimax optimality means that given nn identical qubits, there exists no estimator which can perform better than the proposed estimator on a neighborhood of size n−1/2n^{-1/2} of an arbitrary state. In particular, it is asymptotically Bayesian optimal for a large class of prior distributions. We present a physical implementation of the optimal estimation strategy based on continuous time measurements in a field that couples with the qubits. The crucial ingredient of the result is the concept of local asymptotic normality (or LAN) for qubits. This means that, for large nn, the statistical model described by nn identically prepared qubits is locally equivalent to a model with only a classical Gaussian distribution and a Gaussian state of a quantum harmonic oscillator. The term `local' refers to a shrinking neighborhood around a fixed state ρ0\rho_{0}. An essential result is that the neighborhood radius can be chosen arbitrarily close to n−1/4n^{-1/4}. This allows us to use a two steps procedure by which we first localize the state within a smaller neighborhood of radius n−1/2+Ï”n^{-1/2+\epsilon}, and then use LAN to perform optimal estimation.Comment: 32 pages, 3 figures, to appear in Commun. Math. Phy

    Physics with the KLOE-2 experiment at the upgraded DAϕ\phiNE

    Get PDF
    Investigation at a ϕ\phi--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/etaâ€Č^\prime mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e+e−e^+ e^- physics in the continuum with the measurements of (multi)hadronic cross sections and the study of gamma gamma processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added reference to section
    • 

    corecore