8 research outputs found

    Distributed Ethernet Based System of Measurement and Visualization for Buildings Monitoring

    Get PDF
    AbstractDespite advanced facilities and sophisticated control algorithm which are available in engineering practice, heating, ventilating and air conditioning system (HVAC) constantly works not properly in many buildings. Despite that control loop normally works without any faults, an air quality is often measured in non-representative way. Finding a reason of any defect in HVAC and efficiency assessment is a common task nowadays. Although new buildings are often monitored by building management system (BMS), the extensive analysis involves additional measurements. In this paper authors describe a developed from scratch, distributed measurement and visualization system, which consist of measuring devices with Ethernet connectivity and visualization software. Designed solution seeks to be scalable, flexible and user-friendly. Developed visualization system can operate with different external data sources. Visualization system performance was tested by connecting to heating plant and it usability was assessed. The results show that online visualization rationalizes maintaining of monitored system

    Estimation of sensible and latent heat based on measurements for non-typical large room

    No full text
    The knowledge about dynamic changing heating and cooling load in existing building is essential for proper energy management. Whenever existing building is analyzed or ventilation system is going optimized, it’s essential to estimate temporary sensible and latent heat based on historical data. The basic conditions for heat calculations are quasi-stable thermal conditions. If supply air temperature significantly varies in short time, what happens very often, the calculations can give untrue results. The procedure described in this article improves usability of measured data affected by rapid supply air temperature changing. Therefore real sensible and latent heat can be calculated, what it is important for future optimization process. Specified, on the basis of varying supply and exhaust air temperatures, thermal loads range from -55.8 kW to 40.7 kW was substitute to more authentic range from -14.1 kW to 51.2 kW received from the conducted simulations. In addition, the data obtained from the simulation showed that latent heat gains were associated with the air temperature in the room, and not with the operation mode of the ventilation unit (day/night) as observed on the basis of historical data

    Impact of the duct static pressure reset control strategy on the energy consumption by the HVAC system

    No full text
    This article addresses different duct static pressure control strategies which could be implemented in variable air volume air-conditioning systems (VAV). Two pressure reset control strategies are compared to the commonly used control solution based on the “Constant static pressure” method. First pressure reset control strategy, known as PID Control, uses signals from VAV boxes controllers to reset duct static pressure in a way that one of the VAV dampers is maintained almost entirely open. Second strategy decreases static pressure setpoint until an adjustable number of pressure requests occur. As a response to the certain amount of requests, static pressure setpoint is increased. This strategy is called Trim & Respond. Both static pressure reset control strategies described in this paper are considered to have more significant potential for energy savings than the “Constant static pressure” method. In order to validate this potential, several simulations for different control strategies were carried out and the obtained results are compared and analysed. The theoretical limit of the energy savings - set of the optimal control actions, was estimated with Nelder-Mead algorithm and also presented in this article. General description of the static pressure control strategies "Constant static pressure", PID Control and Trim & Respond is given

    Intake power measurement as a criterion for control of HVAC systems

    No full text
    Under certain conditions, a HVAC system may consume less energy, provided that the initial response to the increasing heat gains is the increase in the airflow, while cooling is delayed. This ensures that the energy for cooling and reheat is reduced, while the fan power increases. Note that it is difficult to develop the following approach in the standard sequential control algorithms. On the other hand, the use of more complex algorithms than standard sequential algorithms is generally not encouraged because of the increase in the complexity of the control system and its resistance to respond to the varying parameters of a HVAC system. In this work, therefore, to avoid the following complications, the Intake Power Optimization algorithm is proposed. The Intake Power optimization algorithm is compared to the two sequential algorithms: Air conditioning and Airflow priority. To create the reference point enabling comparisons of the three strategies, the optimal control was established using the Nelder-Mead method. It is shown that the Intake power optimization algorithm provides a better control than the sequential algorithms and almost exclusively performs the optimal control actions. As an aside, the results indicate that the same heat gains, however, evenly distributed between rooms may contribute to the significant reduction of the energy demand

    The influence of crop dryer operation parameters on the efficiency of energy recovery from extract air

    No full text
    Crop drying, especially maize drying, occurs at low external air temperatures, which are lower than the extract air temperature. Therefore, using heat exchangers, to recover thermal energy from the extract air to preheat the cold and dry external air, results in a significant reduction in the primary energy demand for crop drying. The measurements of air parameters in the crop dryer, with a drying capacity of 19 Mg/h of maize, confirm the assumptions undertaken for the production of the heat recovery system. We apply the cross-counter-flow surface heat exchanger system to provide a significant improvement in the efficiency of crop drying. We perform the analysis of the thermal energy recovery system operation. Our results indicate the influence of the drying air set-point and the crop specific humidity on the efficiency of energy recovery from the exhaust air. We performed our measurements at different drying air temperature set-points and different crop relative humidity

    Air temperature gradient in large industrial hall

    No full text
    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed

    Air temperature gradient in large industrial hall

    No full text
    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed
    corecore