1,417 research outputs found

    Split-gate quantum point contacts with tunable channel length

    Get PDF
    We report on developing split-gate quantum point contacts (QPCs) that have a tunable length for the transport channel. The QPCs were realized in a GaAs/AlGaAs heterostructure with a two- dimensional electron gas (2DEG) below its surface. The conventional design uses 2 gate fingers on the wafer surface which deplete the 2DEG underneath when a negative gate voltage is applied, and this allows for tuning the width of the QPC channel. Our design has 6 gate fingers and this provides additional control over the form of the electrostatic potential that defines the channel. Our study is based on electrostatic simulations and experiments and the results show that we developed QPCs where the effective channel length can be tuned from about 200 nm to 600 nm. Length-tunable QPCs are important for studies of electron many-body effects because these phenomena show a nanoscale dependence on the dimensions of the QPC channel

    Соціально-правова та етична природа мусульманської сім‘ї

    Get PDF
    Relative sea-level variations during the late Pleistocene can only be reconstructed with the knowledge of ice-sheet history. On the other hand, the knowledge of regional and global relative sea-level variations is necessary to learn about the changes in ice volume. Overcoming this problem of circularity demands a fully coupled system where ice sheets and sea level vary consistently in space and time and dynamically affect each other. Here we present results for the past 410 000 years (410 kyr) from the coupling of a set of 3-D ice-sheet-shelf models to a global sea-level model, which is based on the solution of the gravitationally self-consistent sea-level equation. The sea-level model incorporates the glacial isostatic adjustment feedbacks for a Maxwell viscoelastic and rotating Earth model with coastal migration. Ice volume is computed with four 3-D ice-sheet-shelf models for North America, Eurasia, Greenland and Antarctica. Using an inverse approach, ice volume and temperature are derived from a benthic δ18O stacked record. The derived surface-air temperature anomaly is added to the present-day climatology to simulate glacial–interglacial changes in temperature and hence ice volume. The ice-sheet thickness variations are then forwarded to the sea-level model to compute the bedrock deformation, the change in sea-surface height and thus the relative sea-level change. The latter is then forwarded to the ice-sheet models. To quantify the impact of relative sea-level variations on ice-volume evolution, we have performed coupled and uncoupled simulations. The largest differences of ice-sheet thickness change occur at the edges of the ice sheets, where relative sea-level change significantly departs from the ocean-averaged sea-level variations

    Creating space for biodiversity by planning swath patterns and field marging using accurate geometry

    Get PDF
    Potential benefits of field margins or boundary strips include promotion of biodiversity and farm wildlife, maintaining landscape diversity, exploiting pest predators and parasites and enhancing crop pollinator populations. In this paper we propose and demonstrate a method to relocate areas of sub-efficient machine manoeuvring to boundary strips so as to optimise the use of available space. Accordingly, the boundary strips will have variable rather than fixed widths. The method is being tested in co-operation with seven farmers in the Hoeksche Waard within the province of Zuid Holland, The Netherlands. In a preliminary stage of the project, tests were performed to determine the required accuracy of field geometry. The results confirmed that additional data acquisition using accurate measuring devices is required. In response, a local contracting firm equipped a small all-terrain vehicle (quad) with an RTK-GPS receiver and set up a service for field measurement. Protocols were developed for requesting a field measurement and for the measurement procedure itself. Co-ordinate transformation to a metric system and brute force optimization of swath patterns are achieved using an open source geospatial library (osgeo.ogr) and Python scripting. The optimizer basically tests all orientations and relevant intermediate angles of input field boundaries and tries incremental positional shifts until the most efficient swath pattern is found. Inefficient swaths intersecting boundary areas are deleted to create space for field margins. The optimised pattern can be forwarded to an agricultural navigation system. At the time of the conference, the approach will have been tested on several farm fields

    Stabilizing nuclear spins around semiconductor electrons via the interplay of optical coherent population trapping and dynamic nuclear polarization

    Get PDF
    We experimentally demonstrate how coherent population trapping (CPT) for donor-bound electron spins in GaAs results in autonomous feedback that prepares stabilized states for the spin polarization of nuclei around the electrons. CPT was realized by excitation with two lasers to a bound-exciton state. Transmission studies of the spectral CPT feature on an ensemble of electrons directly reveal the statistical distribution of prepared nuclear spin states. Tuning the laser driving from blue to red detuned drives a transition from one to two stable states. Our results have importance for ongoing research on schemes for dynamic nuclear spin polarization, the central spin problem and control of spin coherence.Comment: 5 pages, 4 figure

    On the state dependency of the equilibrium climate sensitivity during the last 5 million years

    Get PDF
    It is still an open question how equilibrium warming in response to increasing radiative forcing – the specific equilibrium climate sensitivity S – depends on background climate. We here present palaeodata-based evidence on the state dependency of S, by using CO2 proxy data together with a 3-D ice-sheet-model-based reconstruction of land ice albedo over the last 5 million years (Myr). We find that the land ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcing depends on the CO2 data set used. This non-linearity has not, so far, been accounted for in similar approaches due to previously more simplistic approximations, in which land ice albedo radiative forcing was a linear function of sea level change. The latitudinal dependency of ice-sheet area changes is important for the non-linearity between land ice albedo and sea level. In our set-up, in which the radiative forcing of CO2 and of the land ice albedo (LI) is combined, we find a state dependence in the calculated specific equilibrium climate sensitivity, S[CO2,LI], for most of the Pleistocene (last 2.1 Myr). During Pleistocene intermediate glaciated climates and interglacial periods, S[CO2,LI] is on average ~ 45 % larger than during Pleistocene full glacial conditions. In the Pliocene part of our analysis (2.6–5 Myr BP) the CO2 data uncertainties prevent a well-supported calculation for S[CO2,LI], but our analysis suggests that during times without a large land ice area in the Northern Hemisphere (e.g. before 2.82 Myr BP), the specific equilibrium climate sensitivity, S[CO2,LI], was smaller than during interglacials of the Pleistocene. We thus find support for a previously proposed state change in the climate system with the widespread appearance of northern hemispheric ice sheets. This study points for the first time to a so far overlooked non-linearity in the land ice albedo radiative forcing, which is important for similar palaeodata-based approaches to calculate climate sensitivity. However, the implications of this study for a suggested warming under CO2 doubling are not yet entirely clear since the details of necessary corrections for other slow feedbacks are not fully known and the uncertainties that exist in the ice-sheet simulations and global temperature reconstructions are large

    Public exhibit for demonstrating the quantum of electrical conductance

    Get PDF
    We present a new robust setup that explains and demonstrates the quantum of electrical conductance for a general audience and which is continuously available in a public space. The setup allows users to manually thin a gold wire of several atoms in diameter while monitoring its conductance in real time. During the experiment, a characteristic step-like conductance decrease due to rearrangements of atoms in the cross-section of the wire is observed. Just before the wire breaks, a contact consisting of a single atom with a characteristic conductance close to the quantum of conductance can be maintained up to several seconds. The setup is operated full-time, needs practically no maintenance and is used on different educational levels

    Вплив техногенного чинника на формування скупчень метану в пісковиках

    Get PDF
    Исследовано влияние горных работ в процессе добычи угля на физические свойства песчаников по результатам опробования керна геологоразведочных скважин и горных выработок. Установлено, что коэффициент открытой пористости песчаников, в зоне влияния горных работ существенно отличается от соответствующих показателей в нетронутом массиве. Показано, что такое разуплотнение, за счёт трещинообразвания, способствует увеличению открытой пористости песчаников в 1,2-1,4 раза и формированию проницаемости, соответствующей коллекторам III-IV класса.Influence of mining operations has been investigated in the coal mining process on physical properties of sandstones, on results of core assay of geological prospecting holes and mining workings. It was set that open porosity coefficient of sandstones, in the affected zone of mining operations substantially differs from the proper indexes in natural array. It is shown, that such volume expension due to cracks formation, promotes increasing of sandstones open porosity in 1,2-1,4 time and forming of permeability corresponding of the III-IV class collectors

    The incidence, root-causes, and outcomes of adverse events in surgical units: implication for potential prevention strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We need to know the scale and underlying causes of surgical adverse events (AEs) in order to improve the safety of care in surgical units. However, there is little recent data. Previous record review studies that reported on surgical AEs in detail are now more than ten years old. Since then surgical technology and quality assurance have changed rapidly. The objective of this study was to provide more recent data on the incidence, consequences, preventability, causes and potential strategies to prevent AEs among hospitalized patients in surgical units.</p> <p>Methods</p> <p>A structured record review study of 7,926 patient records was carried out by trained nurses and medical specialist reviewers in 21 Dutch hospitals. The aim was to determine the presence of AEs during hospitalizations in 2004 and to consider how far they could be prevented. Of all AEs, the consequences, responsible medical specialty, causes and potential prevention strategies were identified. Surgical AEs were defined as AEs attributable to surgical treatment and care processes and were selected for analysis in detail.</p> <p>Results</p> <p>Surgical AEs occurred in 3.6% of hospital admissions and represented 65% of all AEs. Forty-one percent of the surgical AEs was considered to be preventable. The consequences of surgical AEs were more severe than for other types of AEs, resulting in more permanent disability, extra treatment, prolonged hospital stay, unplanned readmissions and extra outpatient visits. Almost 40% of the surgical AEs were infections, 23% bleeding, and 22% injury by mechanical, physical or chemical cause. Human factors were involved in the causation of 65% of surgical AEs and were considered to be preventable through quality assurance and training.</p> <p>Conclusions</p> <p>Surgical AEs occur more often than other types of AEs, are more often preventable and their consequences are more severe. Therefore, surgical AEs have a major impact on the burden of AEs during hospitalizations. These findings concur with the results from previous studies. However, evidence-based solutions to reduce surgical AEs are increasingly available. Interventions directed at human causes are recommended to improve the safety of surgical care. Examples are team training and the surgical safety checklist. In addition, specific strategies are needed to improve appropriate use of antibiotic prophylaxis and sustainable implementation of hygiene guidelines to reduce infections.</p

    Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet

    Get PDF
    We present four years (August 2003–August 2007) of surface mass balance data from the ablation zone of the west Greenland ice sheet along the 67&amp;deg; N latitude circle. Sonic height rangers and automatic weather stations continuously measured accumulation/ablation and near-surface climate at distances of 6, 38 and 88 km from the ice sheet margin at elevations of 490, 1020 and 1520 m a.s.l. Using a melt model and reasonable assumptions about snow density and percolation characteristics, these data are used to quantify the partitioning of energy and mass fluxes during melt episodes. The lowest site receives very little winter accumulation, and ice melting is nearly continuous in June, July and August. Due to the lack of snow accumulation, little refreezing occurs and virtually all melt energy is invested in runoff. Higher up the ice sheet, the ice sheet surface freezes up during the night, making summer melting intermittent. At the intermediate site, refreezing in snow consumes about 10% of the melt energy, increasing to 40% at the highest site. The sum of these effects is that total melt and runoff increase exponentially towards the ice sheet margin, each time doubling between the stations. At the two lower sites, we estimate that radiation penetration causes 20–30% of the ice melt to occur below the surface
    corecore