618 research outputs found

    Structure-function analysis reveals that the Pseudomonas aeruginosa Tps4 two-partner secretion system is involved in CupB5 translocation

    Get PDF
    Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium, synonymous with cystic fibrosis patients, which can cause chronic infection of the lungs. This pathogen is a model organism to study biofilms: a bacterial population embedded in an extracellular matrix that provide protection from environmental pressures and lead to persistence. A number of Chaperone-Usher Pathways, namely CupA-CupE, play key roles in these processes by assembling adhesive pili on the bacterial surface. One of these, encoded by the cupB operon, is unique as it contains a nonchaperone-usher gene product, CupB5. Two-partner secretion (TPS) systems are comprised of a C-terminal integral membrane β-barrel pore with tandem N-terminal POTRA (POlypeptide TRansport Associated) domains located in the periplasm (TpsB) and a secreted substrate (TpsA). Using NMR we show that TpsB4 (LepB) interacts with CupB5 and its predicted cognate partner TpsA4 (LepA), an extracellular protease. Moreover, using cellular studies we confirm that TpsB4 can translocate CupB5 across the P. aeruginosa outer membrane, which contrasts a previous observation that suggested the CupB3 P-usher secretes CupB5. In support of our findings we also demonstrate that tps4/cupB operons are coregulated by the RocS1 sensor suggesting P. aeruginosa has developed synergy between these systems. Furthermore, we have determined the solution-structure of the TpsB4-POTRA1 domain and together with restraints from NMR chemical shift mapping and in vivo mutational analysis we have calculated models for the entire TpsB4 periplasmic region in complex with both TpsA4 and CupB5 secretion motifs. The data highlight specific residues for TpsA4/CupB5 recognition by TpsB4 in the periplasm and suggest distinct roles for each POTRA domain

    Guillain-Barré syndrome: a century of progress

    Get PDF
    In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS

    International Expert Consensus on Switching Platelet P2Y(12) Receptor-Inhibiting Therapies

    Get PDF
    Dual antiplatelet therapy with aspirin and a P2Y(12) inhibitor is the treatment of choice for the prevention of atherothrombotic events in patients with acute coronary syndromes and for those undergoing percutaneous coronary interventions. The availability of different oral P2Y(12) inhibitors (clopidogrel, prasugrel, ticagrelor) has enabled physicians to contemplate switching among therapies because of specific clinical scenarios. The recent introduction of an intravenous P2Y(12) inhibitor (cangrelor) further adds to the multitude of modalities and settings in which switching therapies may occur. In clinical practice, it is not uncommon to switch P2Y(12) inhibitor, and switching may be attributed to a variety of factors. However, concerns about the safety of switching between these agents have emerged. Practice guidelines have not fully elaborated on how to switch therapies, leaving clinicians with limited guidance on when and how to switch therapies when needed. This prompted the development of this expert consensus document by key leaders from North America and Europe with expertise in basic, translational, and clinical sciences in the field of antiplatelet therapy. This expert consensus provides an overview of the pharmacology of P2Y(12) inhibitors, different modalities and definitions of switching, and available literature and recommendations for switching between P2Y(12) inhibitors

    Non-Interactive Secure 2PC in the Offline/Online and Batch Settings

    Get PDF
    In cut-and-choose protocols for two-party secure computation (2PC) the main overhead is the number of garbled circuits that must be sent. Recent work (Lindell, Riva; Huang et al., Crypto 2014) has shown that in a batched setting, when the parties plan to evaluate the same function NN times, the number of garbled circuits per execution can be reduced by a O(logN)O(\log N) factor compared to the single-execution setting. This improvement is significant in practice: an order of magnitude for NN as low as one thousand. % Besides the number of garbled circuits, communication round trips are another significant performance bottleneck. Afshar et al. (Eurocrypt 2014) proposed an efficient cut-and-choose 2PC that is round-optimal (one message from each party), but in the single-execution setting. In this work we present new malicious-secure 2PC protocols that are round-optimal and also take advantage of batching to reduce cost. Our contributions include: \begin{itemize} \item A 2-message protocol for batch secure computation (NN instances of the same function). The number of garbled circuits is reduced by a O(logN)O(\log N) factor over the single-execution case. However, other aspects of the protocol that depend on the input/output size of the function do not benefit from the same O(logN)O(\log N)-factor savings. \item A 2-message protocol for batch secure computation, in the random oracle model. All aspects of this protocol benefit from the O(logN)O(\log N)-factor improvement, except for small terms that do not depend on the function being evaluated. \item A protocol in the offline/online setting. After an offline preprocessing phase that depends only on the function ff and NN, the parties can securely evaluate ff, NN times (not necessarily all at once). Our protocol\u27s online phase is only 2 messages, and the total online communication is only +O(κ)\ell + O(\kappa) bits, where \ell is the input length of ff and κ\kappa is a computational security parameter. This is only O(κ)O(\kappa) bits more than the information-theoretic lower bound for malicious 2PC

    Development of Grb2 SH2 Domain Signaling Antagonists: A Potential New Class of Antiproliferative Agents

    Get PDF
    Aberrant signaling through protein-tyrosine kinase (PTK)-dependent pathways is associated with several proliferative diseases. Accordingly, PTK inhibitors are being developed as new approaches for the treatment of certain cancers. Growth factor receptor bound protein 2 (Grb2) is an important downstream mediator of PTK signaling that serves obligatory roles in many pathogenic processes. One of the primary functions of Grb2 is to bind to specific phosphotyrosyl (pTyr)-containing sequences through its Src homology 2 (SH2) domain. Agents that bind to the Grb2 SH2 domain and prevent its normal function could disrupt associated PTK signaling and serve as alternatives to kinase-directed inhibitors. Starting from the X-ray crystal structure of a lead peptide bound to the Grb2 SH2 domain, this review will summarize important contributions to these efforts. The presentation will be thematically arranged according to the region of peptide modified, proceeding from the N-terminus to the C-terminus, with a special section devoted to aspects of conformational constraint

    Solution Structure of Tensin2 SH2 Domain and Its Phosphotyrosine-Independent Interaction with DLC-1

    Get PDF
    Background: Src homology 2 (SH2) domain is a conserved module involved in various biological processes. Tensin family member was reported to be involved in tumor suppression by interacting with DLC-1 (deleted-in-liver-cancer-1) via its SH2 domain. We explore here the important questions that what the structure of tensin2 SH2 domain is, and how it binds to DLC-1, which might reveal a novel binding mode. Principal Findings: Tensin2 SH2 domain adopts a conserved SH2 fold that mainly consists of five b-strands flanked by two a-helices. Most SH2 domains recognize phosphorylated ligands specifically. However, tensin2 SH2 domain was identified to interact with nonphosphorylated ligand (DLC-1) as well as phosphorylated ligand. Conclusions: We determined the solution structure of tensin2 SH2 domain using NMR spectroscopy, and revealed the interactions between tensin2 SH2 domain and its ligands in a phosphotyrosine-independent manner

    Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-Specific Sortases: SrtA and SrtC1

    Get PDF
    The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a ‘lid’ in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the ‘lid’ mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis
    corecore